超氧化物歧化酶(Superoxide dismutase,SOD)是生物体系中抗氧化酶系的重要组成成员,广泛分布在微生物、植物和动物体内。

中文名

超氧化物歧化酶

别名

SOD

发现时间

1969年

应用领域

生化制药

作用

能够催化超氧阴离子自由基歧化生成氧和过氧化氢,在机体氧化与抗氧化平衡中起到至关重要的作用

外文名

Superoxide Dismutase

基本简介

概念

超氧化物歧化酶(SuperoxideDismutase,SOD)是生物体内存在的一种抗氧化金属酶,它能够催化超氧阴离子自由基歧化生成氧和过氧化氢,在机体氧化与抗氧化平衡中起到至关重要的作用。

分类

按照SOD中金属辅基的不同,大致可将SOD分为三大类,分别为Cu/Zn-SOD、Mn-SOD、Fe-SOD。

①Cu/Zn-SOD:呈蓝绿色,主要存在于真核细胞的细胞质内,被认为存在于比较原始的生物类群中且分布最广的一种。

②Mn-SOD:呈粉红色,主要存在于原核生物和真核生物的线粒体中。

③Fe-SOD:呈黄褐色,主要存在于原核细胞中。它们可以有效地清除超氧阴离子自由基(带有1个未成对电子的同时,还带有1个负电荷),避免其对细胞过度的损伤,具有抗氧化、抗辐射及抗衰老等功能。

分布

①大多数原始的无脊椎动物细胞中都存在Cu/Zn-SOD,脊椎动物则一般含有Cu/Zn-SOD和Mn-SOD。人、鼠、猪、牛等红细胞和肝细胞中含Cu/Zn-SOD,且其主要存在于细胞质,同时也存在于线粒体内外膜之间。而从人和动物肝细胞中也纯化了Mn-SOD,其一般存在于线粒体基质中。

②植物细胞中的Fe-SOD主要存在于叶绿体中。

③真菌里一般含Mn-SOD和Cu/Zn-SOD。大多数真核藻类在其叶绿体基质中存在Fe-SOD,类囊体膜上结合着Mn-SOD,而多数藻类中不含Cu/Zn-SOD。

结构

①Cu/Zn-SOD:其活性中心包括一个Cu离子和一个Zn离子。研究表明,Cu的存在是Cu/Zn-SOD活性所必需的,它直接与超氧阴离子自由基作用,而Zn周围环境拥挤,没有直接裸露在反应溶液中,不直接与超氧阴离子自由基作用,起到稳定活性中心周围环境的作用。二价铜离子与其周围四个组氨酸上的氮原子以配位键结合,构型是一个畸变的近平面四方形。Zn的周围有三个组氨酸通过氮原子与之配位,其中一个组氨酸被Cu和Zn所共用,形成―咪唑桥‖结构。另外,Zn还同一个天冬氨酸残基配位,使Zn形成畸面四面体配位构型。

②Mn-SOD:由203个氨基酸残基构成。活性中心为Mn(Ⅲ),配位结构为五配位的三角双锥,其中一个轴向配体为水分子,另一轴向位置的配位基为His-28蛋白质辅基,在赤道平面上是蛋白质辅基His-83,Asp-166和His-170。酶的活性部位在一个主要由疏水残基构成的环境里,两个亚基链组成一个通道,构成了底物或其它内界配体接近Mn(Ⅲ)离子的必经之路。

反应机理

超氧化物歧化酶

SOD的催化作用是通过金属离子M(氧化态)和M(还原态)的交替电子得失实现的。一般认为超氧阴离子自由基首先与金属离子形成内界配合物,M被体内的超氧阴离子自由基还原为M,同时生成O2,M又被HO2氧化为M,同时生成H2O2。而SOD又被氧化为初始氧化态的SOD。最后,H2O2在过氧化氢酶的作用下,被催化分解为水(H2O)和O2。

测定方法

超氧化物歧化酶活性的主要测定方法有直接法、邻苯三酚自氧化法、细胞色素C还原法、化学发光法及荧光动力学法等。近年来又建立了多种新方法,如免疫学方法、简易凝胶过滤扩散法、极谱氧电极法、微量测活方法等。

1.直接法原理是根据O2或产生O2的物质本身的性质测定O2的歧化量,从而确定SOD的活性。经典的直接法包括:脉冲辐射分解法、电子顺磁共振波法(EPR)、核磁共振法。由于所需的仪器设备价格昂贵,一般较少应用。

2.邻苯三酚自氧化法:原理是基于经典的分光光度法,在碱性条件下,邻苯三酚自氧化成红桔酚,用紫外-可见光谱跟踪波长为325nm、420nm或650nm(经典为420nm),同时产生O2,SOD催化O2发生歧化反应从而抑制邻苯三酚的自氧化,样品对邻苯三酚自氧化速率的抑制率,可反映样品中的SOD含量。本法具有特异性强,所需样本量少(仅50μl),操作快速简单,重复性好,灵敏度高,试剂简单等优点。

3.细胞色素C还原法:原理是黄嘌呤-黄嘌呤氧化酶体系中产生的O2使一定量的氧化型细胞色素C还原为还原型细胞色素C,后者在550nm有最大光吸收。在SOD存在时,由于一部分O2被SOD催化而歧化,O2还原细胞色素C的反应速度则相应减少,即其反应受到抑制。将抑制反应的百分数与SOD浓度作图可得到抑制曲线,由此计算样品中SOD活性。本法是间接法中的经典方法,但本法灵敏度较低。

4.化学发光法:原理是黄嘌呤氧化酶在有氧条件下,催化底物黄嘌呤或次黄嘌呤发生氧化反应生成尿酸,同时产生O2。后者可与化学发光剂鲁米诺反应,使其产生激发。SOD能清除O2从而抑制鲁米诺的化学发光。本法可应用于SOD的微量测定,不仅灵敏度高,简便易行,而且特异性与准确性至少与细胞色素C还原法类似。

5.免疫学方法:其测定的是SOD活性,免疫学方法则可测定样品中SOD的质量,因此特异性较好,是较理想的测定SOD方法,免疫法有放射免疫法、化学发光免疫分析法、ELISA法等。但其缺陷是只能测定抗体相应的抗原,对于检测不同种类的SOD,则须制备相应的特异性抗体,手续繁琐。