可变排量发动机(VDE) ,是指应用先进的电脑控制技术来调整发动机的排气量,以进一步改善汽车的燃油经济性降低能耗的一种发动机。

中文名

可变排量发动机

外文名

VDE

类别

汽车技术

特点

能够减少燃油的消耗

原理

可变排量,或称为切缸工作循环。可变排量技术就是根据汽车动力的需求来实时决定发动机的有效排量,使做功的汽缸总是处于大负荷状态,从而达到节能环保的目的。这一技术适用于中大排量、V型布置的发动机,如本田的V6、通用的V8及戴克的们2汽油机。

历史沿革

最初成型

可变排量发动机并不是一项新的汽车技术。通用汽车公司早在80年代就在凯迪拉克上配备过可变排量发动机,但当时的机型未能达到它应该达到的性能标准。因为发动机经常产生较大的噪声,且从8缸转换成4缸的过程也非常不稳定,偶尔还会被卡死在一种状态下无法调节。造成这种问题的原因并不是可变排量发动机本身的技术有问题,而是当时的电脑芯片不能完成每秒200次的计算功能。随着电脑硬件的发展,今天的汽车电脑可以完成每秒2000次的运算,这就可能对发动机提供更加精确的控制

[1]

电脑控制

美国福特汽车公司利用最先进的电脑控制技术,开发出可变排量发动机(VDE),并准备将这种发动机安装在福特汽车公司以后生产的轿车和卡车上,以改善汽车的燃油经济性。这种发动机技术最适合多汽缸的发动机使用。对于12缸发动机来说,采用这种技术,即相当于安装了两个独立的6缸发动机,可以根据驾驶的需要让一台发动机运行,而让另一台处于怠速状态。这样,就可以随时调整发动机的排气量,从而减少能源的消耗。

中国发展

佛山市汽车创意实验室(vclab)也研究出一种利用控制发动机的进气温度来达到控制排量的技术。根据空气冷缩热胀的原理,在汽车怠速或者刹车时,热气管道往发动机输入较热的空气,根据汽油的标号以及爆震控制的需要,必要时可以输入近100-150度甚至更高的空气供内燃机燃烧,由于空气密度的大幅降低,在保证理想空燃比的前提下,可以大幅降低喷油量,由于进气密度的大幅降低,压缩进程时压缩空气所需的能量也大幅降低,这样在发动机体积不变的前提下,在怠速或减速时可以降低发动机的功率,减少喷油,降低排放。[1]

问题与对策

泵气损失问题

发动机在全负荷时燃料所具有的热量的30%得到利用,而其余的70%热量则损耗掉。其中排放气体与辐射损耗约42%,冷却损耗约20%,摩擦损失约8%,而泵气损失则包含在摩擦损失内。

为了降低废气与辐射的热损失或冷却损失,发动机采用各种绝热措施,或者采用无冷却措施(即不利用冷却水降低发动机燃烧温度)。为此要求采用诸如陶瓷类的特殊材料。而实际上,以及试制各种以陶瓷为绝热材料的不使用冷却水的柴油机。然而由于耐久性不好,多数最终归于失败。所以,减少摩擦损失是实际上有效降低热量损失的重要手段。

降低泵气损失的措施有:稀薄燃烧、分层燃烧、非节气门方式。稀薄燃烧或分层燃烧即在低负荷时稍微通过开启节气门以降低进气阻力。另一方面,所谓非节气门方式则是指决定进气门的关闭时刻,控制进气量,消除节气门引起的泵气损失。由于这一原因,采用稀薄燃烧与分层燃烧时,在低负荷使空燃比稀薄,但是在采用非节气门方式时空燃比则保持不变。[1]

气体燃烧问题

稀薄燃烧或分层燃烧时在排放气体中残留氧气,所以难以进行排放气体的有效净化。而采用非节气门方式由于进气门的驱动装置复杂,其降低泵气损失的效果差。当然,非进气门方式还存在着若干优点,诸如能提高发动机响应性与输出扭矩。

针对上述情况,可变排量发动机则能够把稀薄燃烧、分层燃烧、节气门方式的各个优点集中于一身。可变排量方式能够按照负荷的变化改变发动机的排量,因而能够大幅度降低泵气损失,确保空燃比一定,所以能够高精度净化排放气体。理想的状态是,发动机排量能够连续变化,但是实际情况是,在气缸数量有限的发动机上是不可能实现的。不过,车用发动机往往低负荷运转工况多,所以采用可变排量来降低泵气损失,仍不失为具有相当效果的一种措施。[1]

应用

与混合动力的匹配

从原理上讲,在四冲程发动机上,如果有部分气缸处于进排气门关闭状态就能够改变排量。在进排气门关闭的气缸中,进排气中止,就能减少相应气缸的排气量。为了保持进排气门关闭状态,最适宜的方法就是切断气门凸轮与气门之间的驱动路径。尽管至今已经实用化,有多种多样的可变排量发动机,但几乎都采用这种方式。

通用汽车公司与三菱汽车公司是最早开发可变排量发动机的公司,然而,批量生产的车型中搭载可变排量发动机的,也只有本田和克莱斯勒。本田在思域混合动力车与Inspire轿车上搭载可变排量发动机;而克莱斯勒则在300C与charger等车型上搭载可变排量发动机。也只有这两家汽车公司分别采用了不同种类的可变排量机构。

在停阀机构中摇臂分为气门升程用摇臂与气门停止用摇臂,并且两者之间设有同步活塞,使每一气缸各配置气门升程用主辅摇臂及停阀用主辅摇臂,各配置气门升程/气门停止用的凸轮。当气门升程用摇臂/停缸用摇臂由同步活塞连接时,气门开闭;而当两者连接切断时则气门处于关闭状态。由于减速,发动机转速降低到1000r/min时,为了防止发动机过载熄火,气门升程/停阀用摇臂进行连接,当停阀气缸重新工作时,发动机回复到通常的4个缸运转。

停阀用摇臂的一端与升程量为零的停阀凸轮接合,在气门停止工作时,停阀用摇臂的运动停止。另一方面,气门升程用摇臂通过螺旋弹簧经常顶住凸轮。这样通过停阀用摇臂与气门升程用摇臂的位置控制,能够确保气缸从停阀不工作的状态重新进入工作状态。

现有思域混合动力车搭载的可变排量发动机在4个气缸上全部配置3级VTEC停阀机构。减速时所有的进排气门处于关闭状态,发动机排量实际上是零。所有的进排气门进入停阀状态,是为了进一步限制减速时的发动机运转阻力的缘故,使发动机运转阻力降低到1/3左右。能够实现所有气缸进入停阀工作状态是因为考虑到旧型思域混合动力车的实际效果,能够充分确认停阀气缸重新进入工作的可靠性的缘故。[1]

与涡轮增压等方法相比,可以同样达到增加输出功率的效果,但系统的结构更简单,同时可以实现功率的变大、变小的双向变化。具有很高的实用性。