转炉钢是指在转炉内以液态生铁为原料,将高压空气或氧气从转炉的顶部、底部、侧面吹入炉内熔化的生铁液中,使生铁中的杂质被氧化去除而炼成的钢。钢中的氮对钢的影响主要有以下几个方面:氮在晶界析出, 造成钢质出现蓝脆;氮与钢中Ti 或A1 结合为(TiN)或(AlN), 弱化晶界强度, 使得钢的脆性区发生变化, 易造成铸坯表面出现裂纹;钢中氮存在,降低了钢的韧性、焊接性能、热应力区韧性, 使钢材脆性增加。

外文名

Converter steel

领域

冶炼

学科

冶金工程

材料简介

转炉钢按炉衬的耐火材料性质可分为碱性转炉钢和酸性转炉钢。按气体吹入炉内的部位可分为顶吹转炉钢、底吹转炉钢和侧吹转炉钢,还有顶吹、底吹复合转炉钢等。现在氧气转炉钢生产效率高,质量也很好,己被广泛应用,成为世界上的主要钢类。转炉钢的主要品种有碳素钢、低合金钢和少量合金钢。

重要环节

转炉炼钢厂冶炼工艺路线为:转炉—LF精炼—连铸。因钢液吸氮贯穿于转炉炼钢生产的全过程。炼钢过程需要在每一个环节对增氮进行控制。要降低最终钢液中的氮含量, 必须控制炉料中的原始氮含量和熔炼过程、转炉炉出钢过程、LF 精炼过程、中间包及结晶器中的增氮。

变化规律

目前,转炉的工艺路线中, 转炉炉料主要是80 ~ 85 %的铁水, 其余为废钢。原料情况较为稳定, 保证了转炉终点氮含量较稳定。因此, 增氮的环节为转炉出钢过程中合金增氮及钢水吸氮, 精炼过程增氮及连铸浇注过程中吸氮。根据钢中氮含量的影响环节, 在各个节点进行取样, 通过美国LECO 公司的TCH600 氧氮氢连测仪分析。

转炉出钢前钢中的氮含量为0.0244 %, 出钢过程及合金化增氮0.0132 %, 精炼过程氮增加量为0.0364 %, 连铸过程增氮为0.0194 %(主要是精炼出站到中包增加)。通过取样分析, 说明钢液增氮贯穿于整个炼钢生产过程。

而最主要的增氮环节为精炼过程增氮。因此精炼过程增氮是目前杭钢转炉炼钢的限制性环节。如能合理改善LF 精炼工艺则可以有效地控制钢中氮含量。

氮含量分析

1  精炼工序氮来源分析

从上述分析可知, 精炼工序增氮为转炉炼钢全程增氮的限制性环节。而精炼工序增氮的影响因素主要有:原辅材料带入、喂线工艺钢水外翻吸氮、通电过程钢水吸氮。

为搞清楚精炼工序增氮的变化规律, 特将精炼过程分为进站、中间样、钙处理前、出站四个节点分析钢中氮含量的变化规律。

增氮过程贯穿于整个精炼过程, 最主要的节点为进站到取中间样及通电结束成分微调、钙处理两个阶段。分析精炼工艺过程,第一个增氮环节主要因素有造渣初期, 大量的原辅料加入带入的氮, 泡沫化白渣未成形造成钢水吸氮。第二个增氮环节为钢水成分微调喂入碳线、钙线带入的氮及喂线过程钢水大翻吸氮。因此, 原辅料带入氮及钢液吸氮为精炼工序增氮因素。

2  精炼工序原辅料分析

对目前精炼工序原辅料中可能带来氮的原辅料逐一取样排查。分析出其中造渣剂、碳芯线氮含量较高, 生产工程加入量较大。

1)造渣剂:为检验其中的氮含量,造渣剂中氮含量较高,且批次间含量极不稳定。为研究造渣剂中的氮的存在方式, 利用XRD -6100 衍射仪定性分析。

从XRD 分析可知, 造渣剂中的氮主要以AlN 形式存在。通过下式进入钢中, 从而使钢水增氮。用于精炼结束成分微调, 取样分析,碳芯线中氮含量较高。因此通过一定速度达到一定深度要求喂入含氧较低的钢液, 碳芯线中氮直接进入钢中, 从而使钢水增氮。

工艺改进

1  工艺改进措施

根据上述分析, 控制转炉钢中氮含量, 主要控制精炼环节原辅料增氮, 及整个转炉生产过程钢液吸气增氮。钢中的氮即可得到有效控制。具体改进工艺如下:

1)精炼过程的吹氩、供电制度进行完善, 尽量减少钢水不裸露吸氮;

2)减少精炼造渣剂使用量, 由原来3kg/吨降低到0 .6kg/吨钢, 减少造渣剂增氮;

3)改进精炼成分微调的碳芯线, 降低碳芯线中氮含量。要求达到0 .05 %以下;

4)做好连铸全程保护浇注, 控制钢水在浇注过程中吸氮。

2  实施效果

通过以上改进措施, 跟踪成材中圆钢中氮含量, 结果明显下降。取转炉生产40Cr 、20Cr 、A105 三钢种。

经过工艺改进后, 转炉钢中氮含量明显下降(下降比例达到40 %~ 50 %)。跟踪后续圆钢, 圆钢表面鳞状裂纹的基本消除。