超声(Ultrasound,简称US)医学是声学、医学、光学及电子学相结合的学科。凡研究高于可听声频率的声学技术在医学领域中的应用即超声医学。包括超声诊断学、超声治疗学和生物医学超声工程,所以超声医学具有医、理、工三结合的特点,涉及的内容广泛,在预防、诊断、治疗疾病中有很高的价值。

中文名

超声成像

实质

声学医学光学及电子学相结合学科

外文名

Ultrasound

简称

US

发展历程

20世纪50年代建立,70年代广泛发展应用的超声诊断技术,总的发展趋势是从静态向动态图像(快速成像)发展,从黑白向彩色图像过渡,从二维图像向三维图像迈进,从反射法向透射法探索,以求得到专一性、特异性的超声信号,达到定量化、特异性诊断的目的。

基本原理

声波

能够在听觉器官引起声音感觉的波动称为声波。人类能够感觉的声波频率范围约在20-20000HZ。频率超过20000HZ,人的感觉器官感觉不到的声波,叫做超声波。

声波的基本物理性质如下:

(一)声波的频率、周期和速度

声源振动产生声波,声波有纵波、横波和表面波三种形式。而纵波是一种疏密波,就像一根弹簧上产生的波。用于人体诊断的超声波是声源振动在弹性介质中产生的纵波。声波在介质中传播,介质中质点在平衡位置来回振动一次,就完成一次全振动,一次全振动所需要的时间称振动周期(T)。在单位时间内全振动的次数称为频率(f),频率的单位是赫兹(HZ)。f=1/T,声波在介质中以一定速度传播,质点振动一周,波动就前进一个波长(λ)。波速(C)=λ/T或C=f·λ。

(二)声阻抗

声波在媒介中传播,其传播速度与媒质密度有关。在密度较大介质中的声速比密度较小介质中的声速要快。在弹性较大的介质中声速比弹性较小的介质中要快。这就引出了声阻抗的定义,声阻抗为介质密度(ρ)和声速(C)的乘积。用字母Z表示,Z=ρ·C。

超声波

超声波就是频率大于20KHZ,人耳感觉不到的声波,它也是纵波,可以在固体、液体和气体中传播,并且具有与声波相同的物理性质。但是由于超声波频率高,波长短,还具有一些自身的特性。

束射性

超声波具有束射性。这一点与一般声波不同,而与光的性质相似,即可集中向一个方向传播,有较强的方向性,由换能器发出的超声波呈窄束的圆柱形分布,故称超声束。

反射和折射

当一束超声波入射到比自身波长大很多倍的两种介质的交界面上时,就会发生反射和折射。反射遵循反射定律,折射遵循折射定律。由于入射角等于反射角,因此超声波探查疾病时要求声束尽量与组织界面垂直。超声波的反射还与界面两边的声阻抗有关,两介质声阻抗差越大,入射超声束反射越强。声阻抗差越小反射越弱。

穿过大界面的透射声,可能沿入射声束的方向继续进行,亦可能偏离入射声束的方向而传播,后一种现象称超声折射,是由于两种介质内声速的不同所致。

散射与衍射

超声波在介质内传播过程中,如果所遇到的物体界面直径大于超声波的波长则发生反射,如果直径小于波长,超声波的传播方向将发生偏离,在绕过物体以后又以原来的方向传播,此时反射回波很少,这种现象叫衍射。因此波长越短超声波的分辨力越好。如果物体直径大大小于超声波长的微粒,在通过这种微粒时大部分超声波继续向前传播,小部分超声波能量被微粒向四面八方辐射,这种现象称为散射。

超声波的衰减

超声波在介质中传播时,入射超声能量会随着传播距离的增加而逐渐减小,这种现象称作超声波的衰减。

衰减有以下两个原因:(1)超声波在介质中传播时,声能转变成热能,这叫吸收;(2)介质对超声波的反射、散射使得入射超声波的能量向其他方向转移,而返回的超声波能量越来越小。

基本设备

多普勒超声

基本原理

多普勒效应

多普勒效应是奥地利物理学家克里斯汀·约翰·多普勒于1842年首次提出来的。描述了光源与接收器之间相对运动时,光波频率升高或降低的现象。这种相对运动引起的接收频率与发射频率之间的差别称为多普勒频移或多普勒效应。

声波同样具有多普勒效应的特点,多普勒超声最适合对运动流体做检测,所以多普勒超声对心脏及大血管血流的检测尤为重要。

多普勒超声心动图的基本方式

1 脉冲式多普勒(PW)

2 连续式多普勒(CW)

3 彩色多普勒血流显像(CDFI)

超声诊断仪

(一)A型超声诊断仪

A超是一种幅度调制型,是国内早期最普及最基本的一类超声诊断仪,目前已基本淘汰。

(二)M型超声诊断仪

M超是采用辉度调制,以亮度反映回声强弱,M型显示体内各层组织对于体表(探头)的距离随时间变化的曲线,是反映一维的空间结构,因M型超声多用来探测心脏,故常称为M型超声心动图,目前一般作为二维彩色多普勒超声心动图仪的一种显示模式设置于仪器上。

(三)B型超声诊断仪

B型显示是利用A型和M型显示技术发展起来的,它将A型的幅度调制显示改为辉度调制显示,亮度随着回声信号大小而变化,反映人体组织二维切面断层图像。

B型显示的实时切面图像,真实性强,直观性好,容易掌握。它发展十分迅速,仪器不断更新换代,近年每年都有改进的新型B型仪出现,B型仪已成为超声诊断最基本最重要的设备。较常用的B型超声显像方式有:扫查方式:线型(直线)扫查、扇形扫查、梯形扫查、弧形扫查、径向扫查、圆周扫查、复合扫查;扫查的驱动方式:手动扫查、机械扫查、电子扫查、复合扫查。

(四)D型超声诊断仪

超声多普勒诊断仪简称D型超声诊断仪,这类仪器是利用多普勒效应原理,对运动的脏器和血流进行探测。在心血管疾病诊断中必不可少,目前用于心血管诊断的超声仪均配有多普勒,分脉冲式多普勒和连续式多普勒。近年来许多新课题离不开多普勒原理,如外周血管、人体内部器官的血管以及新生肿瘤内部的血供探查等等,所以现在彩超基本上均配备多普勒显示模式。

(五)彩色多普勒血流显像仪

彩色多普勒血流显像简称彩超,包括二维切面显像和彩色显像两部分。高质量的彩色显示要求有满意的黑白结构显像和清晰的彩色血流显像。在显示二维切面的基础上,打开“彩色血流显像”开关,彩色血流的信号将自动叠加于黑白的二维结构显示上,可根据需要选用速度显示、方差显示或功率显示。目前国际市场上彩超的种类及型号繁多,档次开发日新月异,更具高信息量、高分辨率、高自动化、范围广、简便实用等特点。

图像特点

不同类型的超声仪有不同的图像特点,因B型超声是最重要的诊断方法,故对其图像特点做以下介绍:

切面声像图的回声描述

1 回声强弱的描述:根据图像中不同灰阶将回声信号分为强回声、等回声、低回声和无回声。而回声强弱或高低的标准一般以该脏器正常回声为标准或将病变部位回声与周围正常脏器回声强度的比较来确定。如液体为无回声,结石气体或钙化为强回声等。

2 回声分布的描述:按图像中光点的分布情况分为均匀或不均匀,密集或稀疏。在病灶部的回声分布可用“均质”或“非均匀”表述。

3 回声形态的描述:光团:回声光点聚集呈明亮的结团状,有一定的边界。光斑:回声光点聚集呈明亮的小片状,边界清楚。光点:回声呈细小点状。光环:显示圆形或类圆形的回声环。光带:显示形状似条带样回声。

4 某些特殊征象的描述:即将某些病变声像图形象化地命名为某征,用以强调这些征象,常用的有“靶环”征、“牛眼”征、“驼峰”征、“双筒枪”征等。

5 彩色多普勒血流显象还可对脏器内或肿块内、外及外周血管的分布、走向、多少、粗细、形态以及血流速度等多项参数加以显示。

超声图像的常见伪像

1 多次反射

超声垂直照射到平整的界面而形成声波在探头与界面之间来回反射,出现等距离的多条回声,强度渐次减弱,尤其与薄层气体所构成的界面上。

2 多次内部混响

超声在靶内来回反射,形成彗星尾征。

3 切片厚度伪像又称部分容积效应。

因声束宽度较宽(即超声切面图的切片厚度较厚)引起。

4 旁瓣伪像

由声束主瓣外的旁瓣反射造成的。

5 声影

由于前方有强反射或声衰减很大的物质存在,以致在其后方出现声束不能到达的区域即纵条状无回声区称为声影区。

6 折射声影

超声从低声速介质进入高声速介质,在入射角超过临界角时,产生全反射,以致其后方出现声影,见于球形结构的两侧后方或器官的两侧边缘,又称边缘声影。

7 镜面伪像

超声束投射到表面平滑的人体强回声大界面如横膈面上时,犹如光投射到平面镜上一样,产生相似的实、虚两图像。

检查技术

1 实时线阵超声诊断仪:适用于一般的腹部检查,可有多种不同频率探头。主要缺点是探头与人体接触面较大,检查时需要大的透声窗才能使声束有效地经过检查目标。

2 实时扇型超声诊断仪:心脏探查最常用,探头小,便于肋间扫查,缺点是近场视野小。

3 实时凸阵超声诊断仪:凸阵探头具有比扇型探头近场视野大,又比线阵探头远场视野广的优点。

4 彩色和频谱多普勒超声诊断仪:用于探查心血管、各种器官及病变相关血管,外周血管的血流速度、血流量等血流动力学改变。

原理

阵列声场延时叠加成像是超声成像中最传统,最简单的,也是目前实际当中应用最为广泛的成像方式。在这种方式中,通过对阵列的各个单元引入不同的延时,而后合成为一聚焦波束,以实现对声场各点的成像。