二进制(binary)在数学和数字电路中指以2为基数的记数系统,以2为基数代表系统是二进位制的。这一系统中,通常用两个不同的符号0(代表零)和1(代表一)来表示。数字电子电路中,逻辑门的实现直接应用了二进制,因此现代的计算机和依赖计算机的设备里都用到二进制。每个数字称为一个比特(Bit,Binary digit的缩写)

中文名

二进制

外文名

binary system

出处

数学,计算机

类型

算法

属性

计数法

表示法

二进制数据的表示法:

【例1102】将二进制数据111.01写成加权系数的形式。

解:

二进制和十六进制,八进制一样,都以二的幂来进位的。

运算

加法

有四种情况:

0 进位为1

【例1103】求

的和

解:

1011+11

乘法

有四种情况:

减法

。除法

。拈加法

拈加法二进制是加减乘除外的一种特殊算法。

拈加法运算与进行加法类似,但不需要做进位。此算法在博弈论(Game Theory)中被广泛利用

计算机中的十进制小数转换二进制

计算机中的十进制小数用二进制通常是用乘二取整法来获得的。

比如0.65换算成二进制就是:

取1,留下0.3继续乘二取整

二进制

取0,留下0.6继续乘二取整

取1,留下0.2继续乘二取整

取0,留下0.4继续乘二取整

取0,留下0.8继续乘二取整

取1,留下0.6继续乘二取整

取1,留下0.2继续乘二取整

.......

一直循环,直到达到精度限制才停止(所以,计算机保存的小数一般会有误差,所以在编程中,要想比较两个小数是否相等,只能比较某个精度范围内是否相等)。这时,十进制的0.65,用二进制就可以表示为:0.1010011。

还值得一提的是,在计算机中,除了十进制是有符号的外,其它如二进制、八进制、16进制都是无符号的。

在现实生活和记数器中,如果表示数的“器件”只有两种状态,如电灯的“亮”与“灭”,开关的“开”与“关”。一种状态表示数码0,另一种状态表示数码1,1加1应该等于2,因为没有数码2,只能向上一个数位进一,就是采用“满二进一”的原则,这和十进制是采用“满十进一”原则完全相同。

可见二进制的10表示二,100表示四,1000表示八,10000表示十六,……。

二进制同样是“位值制”。同一个数码1,在不同数位上表示的数值是不同的。如11111,从右往左数,第一位的1就是一,第二位的1表示二,第三位的1表示四,第四位的1表示八,第五位的1表示十六。

所谓二进制,也就是计算机运算时用的一种算法。二进制只由一和零组成。[2]

比方说吧,你上一年级时一定听说过“进位筒”(“数位筒”)吧!十进制是个位上满十根小棒就捆成一捆,放进十位筒,十位筒满十捆就捆成一大捆,放进百位筒……

二进制也是一样的道理,个位筒上满2根就向十位进一,十位上满两根就向百位进一,百位上满两根…… 二进制是世界上第一台计算机上用的算法,最古老的计算机里有一个个灯泡,当运算的时候,比如要表达“一”,第一个灯泡会亮起来。要表达“二”,则第一个灯泡熄灭,第二个灯泡就会亮起来。

二进制就是等于2时就要进位。

0=00000000

1=00000001

2=00000010

3=00000011

4=00000100

5=00000101

6=00000110

7=00000111

8=00001000

9=00001001

10=00001010

……

即是逢二进一,二进制广泛用于最基础的运算方式,计算机的运行计算基础就是基于二进制来运行。只是用二进制执行运算,用其他进制表现出来。

其实把二进制三位一组分开就是八进制, 四位一组就是十六进制

进制转换

二进制

十进制数转换为二进制数、八进制数、十六进制数的方法:

二进制数、八进制数、十六进制数转换为十进制数的方法:按权展开求和法

与十进制

(1)二进制转十进制

方法:“按权展开求和”

【例】:

规律:个位上的数字的次数是0,十位上的数字的次数是1,......,依次递增,而十分位的数字的次数是-1,百分位上数字的次数是-2,......,依次递减。

注意:不是任何一个十进制小数都能转换成有限位的二进制数。

(2)十进制转二进制

· 十进制整数转二进制数:“除以2取余,逆序排列”(除二取余法)

【例】:

1

· 十进制小数转二进制数:“乘以2取整,顺序排列”(乘2取整法)

【例】:

十进制1至128的二进制表示:

0=0

1=1

2=10

3=11

4=100

5=101

6=110

7=111

8=1000

9=1001

10=1010

11=1011

12=1100

13=1101

14=1110

15=1111

16=10000

17=10001

18=10010

19=10011

20=10100

21=10101

22=10110

23=10111

24=11000

25=11001

26=11010

27=11011

28=11100

29=11101

30=11110

31=11111

32=100000

33=100001

34=100010

35=100011

36=100100

37=100101

38=100110

39=100111

40=101000

41=101001

42=101010

43=101011

44=101100

45=101101

46=101110

47=101111

48=110000

49=110001

50=110010

51=110011

52=110100

53=110101

54=110110

55=110111

56=111000

57=111001

58=111010

59=111011

60=111100

61=111101

62=111110

63=111111

64=1000000

65=1000001

66=1000010

67=1000011

68=1000100

69=1000101

70=1000110

71=1000111

72=1001000

73=1001001

74=1001010

75=1001011

76=1001100

77=1001101

78=1001110

79=1001111

80=1010000

81=1010001

82=1010010

83=1010011

84=1010100

85=1010101

86=1010110

87=1010111

88=1011000

89=1011001

90=1011010

91=1011011

92=1011100

93=1011101

94=1011110

95=1011111

96=1100000

97=1100001

98=1100010

99=1100011

100=1100100

101=1100101

102=1100110

103=1100111

104=1101000

105=1101001

106=1101010

107=1101011

108=1101100

109=1101101

110=1101110

111=1101111

112=1110000

113=1110001

114=1110010

115=1110011

116=1110100

117=1110101

118=1110110

119=1110111

120=1111000

121=1111001

122=1111010

123=1111011

124=1111100

125=1111101

126=1111110

127=1111111

128=10000000

.十进制负数转二进制:“先取正数的二进制值,再取反,加1”

【例】:

31的二进制数为11111,取反00000,加1得1。

与八进制

二进制数转换成八进制数:从小数点开始,整数部分向左、小数部分向右,每3位为一组用一位八进制数的数字表示,不足3位的要用“0”补足3位,就得到一个八进制数。

八进制数转换成二进制数:把每一个八进制数转换成3位的二进制数,就得到一个二进制数。

八进制数字与十进制数字对应关系如下:

【例】:将八进制的37.416转换成二进制数:

3 7 . 4 1 6

011 111 .100 001 110

即:(37.416)8 =(11111.10000111)2

【例】:将二进制的10110.0011 转换成八进制:

0 1 0 1 1 0 . 0 0 1 1 0 0

2 6 . 1 4

即:

与十六进制

二进制数转换成十六进制数:二进制数转换成十六进制数时,只要从小数点位置开始,向左或向右每四位二进制划分一组(不足四位数可补0),然后写出每一组二进制数所对应的十六进制数码即可。

十六进制数转换成二进制数:把每一个十六进制数转换成4位的二进制数,就得到一个二进制数。

十六进制数字与二进制数字的对应关系如下:

【例】:将十六进制数5DF.9 转换成二进制:

5 D F . 9

0101 1101 1111 .1001

即:(5DF.9)16 =(10111011111.1001)2{十六进制怎么会有小数点}

【例】:将二进制数1100001.111 转换成十六进制:

0110 0001 . 1110

6 1 . E

即:(

与十进制的区别

二进制与十进制的区别在于数码的个数和进位规律有很大的区别,顾名思义,二进制的计数规律为逢二进一,是以2为基数的计数体制。10这个数在二进制和十进制中所表示的意义完全不同,在十进制中就是我们通常所说的十,在二进制中,其中的一个意义可能是表示一个大小等价于十进制数2的数值。

十进制与二进制的关系

仿照例题1.3.1,我们可以将二进制数10表示为:

一般地,任意二进制数可表示为:

例题 1.3.2 试将二进制数(01010110)B转换为十进制数。

解:

将每一位二进制数乘以位权后相加便得相应的十进制数

在数字电子技术和计算机应用中,二值数据常用数字波形来表示

。使用数字波形可以使得数据比较直观,也便于使用电子示波器进行监视。图1.3.3表示一计数器的波形。

图1.3.3 用二进制数表示0~15波形图

图中给出了四个二进制波形。看这种二进制波形图时,我们应当沿着图中虚线所示的方向来看,即使图中没有标出虚线(一般都没有标出),也要想象出虚线来。其中在每一个波形上方的数字表示了与波形对应的位的数值,最后一行则是相应的十进制数,其中LSB是英文Least Significant Bit的缩写,表示最低位,MSB是Most Significant Bit的缩写,表示二进制数的最高位。显然,这是一组4位的二进制数,总共有16组,最左边的二进制数为0000,最上边的波形代表二进制数的最低位,也就是通常在十进制数中我们所说的个位数,最下面的是最高位。图中最右边的二进制数为1111,对应的十进制数为15。再来看看对应于十进制数5的二进制数是多少呢?是0101,对了,读数的顺序是从下往上。

二进制数在数字系统(比如计算机之间)中的传输的方式分为串行和并行两种。

其中串行传输时二进制数是按照逐位传递的方式进行传输,根据实际情况可以从最高位或最低位开始传输,一般情况下是从最高位开始传输的。只需要一根数据线。如图1.3.4所示,要完成八位二进制数的传输,需要经历八个时钟周期。

图1.3.4 二进制数据的串行传输

(a) 两台计算机之间的串行通信 (b) 二进制数据的串行表示

典型的例子是调制解调器与计算机之间的通信就是通过串行传输来完成的。

并行传输的效率要高于串行传输,一次可以传输完整的一组二进制数。但是根据所要传输的二进制数的位数的多少,需要备足足够多的数据线。一般来说,常见的并行传输采用的数据线有8、16、32等,再多就很少见了。典型的并行传输例子是打印机与计算机之间的通信传输,见图1.3.5。

图1.3.5 并行传输数据的示意图

(a) 计算机与打印机之间的并行通信 (b) 二进制数据的并行表示

图1.3.5显示了采用并行传输模式,只需要一个时钟周期,即可完成八位二进制数的传输。

通用进制转换

不同进制之间的转换本质就是确定各个不同权值位置上的数码。转换正整数的进制的有一个简单算法,就是通过用目标基数作长除法;余数给出从最低位开始的“数字”  。例如,1020304从10进制转到7进制:

莱布尼茨

用ftp工具以二进制方式上传

在德国图灵根著名的郭塔王宫图书馆(Schlossbiliothke zu Gotha)保存着 一份弥足珍贵的手稿,其标题为:“1与0,一切数字的神奇渊源。这是造物的秘密美妙的典范,因为,一切无非都来自上帝。”这是德国天才大师莱布尼茨(Gottfried Wilhelm Leibniz,1646 - 1716)的手迹。但是,关于这个神奇美妙的数字系统,莱布尼茨只有几页异常精炼的描述。

莱布尼茨不仅发明了二进制,而且赋予了它宗教的内涵。他在写给当时在中国传教的法国耶稣士会牧师布维(Joachim Bouvet,1662 - 1732)的信中说:“第一天的伊始是1,也就是上帝。第二天的伊始是2,……到了第七天,一切都有了。所以,这最后的一天也是最完美的。因为,此时世间的一切都已经被创造出来了。因此它被写作‘7’,也就是‘111’(二进制中的111等于十进制的7),而且不包含0。只有当我们仅仅用0和1来表达这个数字时,才能理解,为什么第七天才最完美,为什么7是神圣的数字。特别值得注意的是它(第七天)的特征(写作二进制的111)与三位一体的关联。”

布维是一位汉学大师,他对中国的介绍是17、18世纪欧洲学界中国热最重要的原因之一。布维是莱布尼茨的好朋友,一直与他保持着频繁的书信往来。莱布尼茨曾将很多布维的文章翻译成德文,发表刊行。恰恰是布维向莱布尼茨介绍了《周易》和八卦的系统,并说明了《周易》在中国文化中的权威地位。

八卦是由八个符号组构成的占卜系统,而这些符号分为连续的与间断的横线两种。这两个后来被称为“阴”、“阳”的符号,在莱布尼茨眼中,就是他的二进制的中国翻版,但实际莱布尼茨是受中国阴阳太极影响,只不过他付出了诸多研究,推演出二进制。他感到这个来自古老中国文化的符号系统与他的二进制之间的关系实在太明显了,因此断言:二进制乃是具有世界普遍性的、最完美的逻辑语言。

另一个可能引起莱布尼茨对八卦的兴趣的人是坦泽尔(Wilhelm Ernst Tentzel),他当时是图灵根大公爵硬币珍藏室的领导,也是莱布尼茨的好友之一。在他主管的这个硬币珍藏中有一枚印有八卦符号的硬币。

与中国易经联系

二进制

1679年3月15日戈特弗里德·威廉·莱布尼茨发明了一种计算法,用两位数代替原来的十位数,即 1 和 0。 1701年他写信给在北京的神父 Grimaldi(中文名字闵明我)和 Bouvet(中文名字白晋)告知自己的新发明,希望能引起他心目中的“算术爱好者”康熙皇帝的兴趣。

白晋很惊讶,因为他发现这种“二进制的算术”与中国古代的一种建立在两个符号基础上的符号系统是非常近似的,这两个符号分别由一条直线和两条短线组成,即── 和 — —。这是中国最著名大概也是最古老的书《易经》的基本组成部分,据今人推测,该书大约产生于公元前第一个千年的初期,开始主要是一部占卜用书,里边的两个符号可能分别代表“是”和“不”。莱布尼茨对这个相似也很吃惊,和他的笔友白晋一样,他也深信《易经》在数学上的意义。他相信古代的中国人已经掌握了二进制并在科学方面远远超过当代的中国人。

这一次将数学与古代中国《易经》相联的尝试是不符合实际的。莱布尼茨的二进制数学指向的不是古代中国,而是未来。莱布尼茨在1679年3月15日记录下他的二进制体系的同时,还设计了一台可以完成数码计算的机器。我们今天的现代科技将此设想变为现实,这在莱布尼茨的时代是超乎人的想象能力的。

特点

优点

数字装置简单可靠,所用元件少;

只有两个数码0和1,因此它的每一位数都可用任何具有两个不同稳定状态的元件来表示;

基本运算规则简单,运算操作方便。

缺点

用二进制表示一个数时,位数多。因此实际使用中多采用送入数字系统前用十进制,送入机器后再转换成二进制数,让数字系统进行运算,运算结束后再将二进制转换为十进制供人们阅读。

二进制和十六进制的互相转换比较重要。不过这二者的转换却不用计算,每个C,C++程序员都能做到看见二进制数,直接就能转换为十六进制数,反之亦然。

我们也一样,只要学完这一小节,就能做到。

首先我们来看一个二进制数:1111,它是多少呢?

你可能还要这样计算:

然而,由于1111才4位,所以我们必须直接记住它每一位的权值,并且是从高位往低位记,:8、4、2、1。即,最高位的权值为

,然后依次是

记住8421,对于任意一个4位的二进制数,我们都可以很快算出它对应的10进制值。

下面列出四位二进制数 xxxx 所有可能的值(中间略过部分)

仅4位的2进制数快速计算方法 十进制值 十六进值

二进制数要转换为十六进制,就是以4位一段,分别转换为十六进制。

如(上行为二制数,下面为对应的十六进制):

1111 1101 , 1010 0101 , 1001 1011

F D , A 5 , 9 B

反过来,当我们看到 FD时,如何迅速将它转换为二进制数呢?

先转换F:

看到F,我们需知道它是15(可能你还不熟悉A~F这六个数),然后15如何用8421凑呢?应该是

,所以四位全为1 :1111。

接着转换 D:

看到D,知道它是13,13如何用8421凑呢?应该是:8 + 4 + 1,即:1101。

所以,FD转换为二进制数,为: 1111 1101

由于十六进制转换成二进制相当直接,所以,我们需要将一个十进制数转换成2进制数时,也可以先转换成16进制,然后再转换成2进制。

比如,十进制数 1234转换成二制数,如果要一直除以2,直接得到2进制数,需要计算较多次数。所以我们可以先除以16,得到16进制数:

被除数 计算过程 商 余数

1234 1234/16 77 2

77 77/16 4 13 (D)

4 4/16 0 4

结果16进制为: 0x4D2

同样,如果一个二进制数很长,我们需要将它转换成10进制数时,除了前面学过的方法是,我们还可以先将这个二进制转换成16进制,然后再转换为10进制。

采用原因

首先,二进位计数制仅用两个数码。0和1,所以,任何具有二个不同稳定状态的元件都可用来表示数的某一位。而在实际上具有两种明显稳定状态的元件很多。例如,氖灯的"亮"和"熄";开关的”开“和”关“; 电压的”高“和”低“、”正“和”负“;纸带上的”有孔“和“无孔”,电路中的”有信号“和”无信号“, 磁性材料的南极和北极等等,不胜枚举。[3]利用这些截然不同的状态来代表数字,是很容易实现的。不仅如此,更重要的是两种截然不同的状态不单有量上的差别,而且是有质上的不同。这样就能大大提高机器的抗干扰能力,提高可靠性。而要找出一个能表示多于二种状态而且简单可靠的器件,就困难得多了。

其次,二进位计数制的四则运算规则十分简单。而且四则运算最后都可归结为加法运算和移位,这样,电子计算机中的运算器线路也变得十分简单了。[1]不仅如此,线路简化了,速度也就可以提高。这也是十进位计数制所不能相比的。

第三,在电子计算机中采用二进制表示数可以节省设备。可 以从理论上证明,用三进位制最省设备,其次就是二进位制。但由于二进位制有包括三进位制在内的其他进位制所没有的优点,所以大多数电子计算机还是采用二进制。此外,由于二进制中只用二个符号“ 0”和“1”,因而可用布尔代数来分析和综合机器中的逻辑线路。这为设计电子计算机线路提供了一个很有用的工具。

第四,二进制的符号“1”和“0”恰好与逻辑运算中的“对”(true)与“错”(false)对应,便于计算机进行逻辑运算。

处理数据

二进制循环编码盘

我们在使用数据库时,有时会用到图像或其它一些二进制数据,这个时候你们就必须使用 getchunk这个方法来从表中获得二进制大对象,我们也可以使用AppendChunk来把数据插入到表中.

我们平时来取数据是这样用的!

Getdata=rs("fieldname")

而取二进制就得这样

size=rs("fieldname").acturalsize

getdata=rs("fieldname").getchunk(size)

我们从上面看到,我们取二进制数据必须先得到它的大小,然后再搞定它,这个好像是ASP中处理二进制数据的常用方法,我们在获取从客户端传来的所有数据时,也是用的这种方法。

下面我们也来看看是怎样将二进制数据加入数据库

rs("fieldname").appendchunk binarydata

一步搞定!

另外,使用getchunk和appendchunk将数据一步一步的取出来!

下面演示一个取数据的例子!

Addsize=2

totalsize=rs("fieldname").acturalsize

offsize=0

Do Where offsize Binarydata=rs("fieldname").getchunk(offsize)

data=data&Binarydata

offsize=offsize+addsize

Loop

当这个程序运行完毕时,data就是我们取出的数据.

换算

从小数点开始3位(不足3位补0)二进制数得到1位八进制数

(用B代表二进制,用O代表八进制):

二进制与十进制的“1248"换算法:例

十进制168421
二进制10101

即16+4+1=21

简单来说,就是把二进制数代入表格内,十进制数不变,只要把有十进制中对应1的数加起来就可以得出结果。

计数系统

进制

在基数b的位置记数系统(其中b是一个正自然数,叫做基数),b个基本符号(或者叫数字)对应于包括0的最小b个自然数。要产生其他的数,符号在数中的位置要被用到。最后一位的符号用它本身的值,向左一位其值乘以b。一般来讲,若b是基底,我们在b进制系统中的数表示为 的形式,并按次序写下数字

。这些数字是0到b-1的自然数。

一般来讲,b进制系统中的数有如下形式:

数 和 是相应数字的比重。

二进制计数

17世纪至18世纪的德国数学家莱布尼茨,是世界上第一个提出二进制记数法的人。用二进制记数,只用0和1两个符号,无需其他符号。

二进制数据也是采用位置计数法,其位权是以2为底的幂。例如二进制数据110.11,逢2进1,其权的大小顺序为

 。对于有n位整数,m位小数的二进制数据用加权系数展开式表示,可写为:

二进制数据一般可写为:

【例】:将二进制数据111.01写成加权系数的形式。

解:

二进制和十六进制,八进制一样,都以二的幂来进位的。