莫比乌斯带,公元1858年,德国数学家莫比乌斯(Mobius,1790~1868)和约翰·李斯丁发现:把一根纸条扭转180°后,两头再粘接起来做成的纸带圈,具有魔术般的性质。

普通纸带具有两个面(即双侧曲面),一个正面,一个反面,两个面可以涂成不同的颜色;而这样的纸带只有一个面(即单侧曲面),一只小虫可以爬遍整个曲面而不必跨过它的边缘。这种纸带被称为“莫比乌斯带”(也就是说,它的曲面从两个减少到只有一个)。

中文名

莫比乌斯带

外文名

Möbius strip/Mobius Band

别名

莫比乌斯环

提出者

莫比乌斯和约翰·李斯丁

相似物

克莱因瓶

应用

数学符号 无穷符号∞

发现命名

公元1858年,两名德国数学家莫比乌斯和Johann Benedict Listing分别发现,一个扭转180度后再两头粘接起来的纸条,具有魔术般的性质。与普通纸带具有两个面(双侧曲面)不同,这样的纸带只有一个面(单侧曲面),一只小虫可以爬遍整个曲面而不必跨过它的边缘!这一神奇的单面纸带被称为“莫比乌斯带”(Möbius strip)  。

作为一种典型的拓扑图形,莫比乌斯带引起了许多科学家的研究兴趣,并在生活和生产中有了一些应用。例如,动力机械的皮带就可以做成“莫比乌斯带”状,这样皮带就不会只磨损一面了。此外,莫比乌斯带也是艺术家眼中的经典造型  。

科学家认为,当具有可展表面(developable surface)的莫比乌斯带被折成之后,它要尽力达到具有最小弹性能量的状态。从20世纪30年代开始,一个关于莫比乌斯带的力学问题就始终困扰着科学家,即如何预测它的三维空间结构。在新的研究中,来自英国伦敦大学学院的非线性动力学家Gert van der Heijden和Eugene Starostin利用一组20年未发表的数学方程,解开了这一长达75年的难题  。

性质

莫比乌斯带本身具有很多奇妙的性质。如果从中间剪开一个莫比乌斯带,不会得到两个窄的带子,而是会形成一个把纸带的端头扭转了两次再结合的环(并不是梅比斯环),再把刚刚做出那个把纸带的端头扭转了两次再结合的环从中间剪开,则变成两个环。如果你把带子的宽度分为三分,并沿着分割线剪开的话,会得到两个环,一个是窄一些的莫比乌斯带,另一个则是一个旋转了两次再结合的环。另外一个有趣的特性是将纸带旋转多次再粘贴末端而产生的。比如旋转三个半圈的带子再剪开后会形成一个三叶结。剪开带子之后再进行旋转,然后重新粘贴则会变成数个莫比乌斯带。

莫比乌斯带常被认为是无穷大符号“∞”的创意来源,因为如果某个人站在一个巨大的莫比乌斯带的表面上沿着他能看到的“路”一直走下去,他就永远不会停下来。但是这是一个不真实的传闻,因为“∞”的发明比莫比乌斯带还更要早。

制作方法

莫比乌斯圈

拿一张白的长纸条,把一面涂成黑色,然后把其中一端翻一个身,粘成一个莫比乌斯带。用剪刀沿纸带的中央把它剪开。纸带不仅没有一分为二,反而剪出一个两倍长的纸圈。

新得到的这个较长的纸圈,本身却是一个双侧曲面,它的两条边界自身虽不打结,但却相互套在一起。把上述纸圈,再一次沿中线剪开,这回可真的一分为二了,得到的是两条互相套着的纸圈,而原先的两条边界,则分别包含于两条纸圈之中,只是每条纸圈本身并不打结罢了。

相反,拿一张白的长纸条,把一面涂成黑色,反方向把其中一端翻一个身,粘成一个莫比乌斯带。用剪刀沿纸带的中央把它剪开。纸带不仅没有一分为二,反而剪出两个环套环的莫比乌斯带。

即;莫比乌斯带沿着中间剪开,可以得到一个一个两倍长的纸圈,也可得到两个环套环的莫比乌斯带。

莫比乌斯带还有更为奇异的特性。一些在平面上无法解决的问题,却不可思议地在莫比乌斯带上获得了解决。

比如在普通空间无法实现的"手套易位"问题:人左右两手的手套虽然极为相像,但却有着本质的不同。我们不可能把左手的手套贴切地戴到右手上去;也不能把右手的手套贴切地戴到左手上来。无论你怎么扭来转去,左手套永远是左手套,右手套也永远是右手套!不过,倘若你把它搬到莫比乌斯带上来,那么解决起来就易如反掌了。

在自然界有许多物体也类似于手套那样,它们本身具备完全相像的对称部分,但一个是左手系的,另一个是右手系的,它们之间有着极大的不同。

拓展

制作过程中把纸带一端旋转180度可以,旋转540度、900度……都符合莫比乌斯带的定义。(在省略号中的数为

180的奇数倍均可以)

和几何学关系

可以用参数方程式创造出立体莫比乌斯带(如右下图)

这个方程组可以创造一个边长为1半径为1的莫比乌斯带,所处位置为

面,中心为

。参数

u在v从一个边移动到另一边的时候环绕整个带子。

莫比乌斯带的参数方程

从拓扑学上来讲,莫比乌斯带可以定义为矩阵

,边由在

的时候

决定。

莫比乌斯带是一个二维的紧致流形(即一个有边界的面),可以嵌入到三维或更高维的流形中。它是一个不可定向的的标准范例,可以看作

R

P#

R

P。同时也是数学上描绘纤维丛的例子之一。特别地,它是一个有一纤维单位区间,

的圆S上的非平凡丛。仅从莫比乌斯带的边缘看去给出S上一个非平凡的两个点(或

Z

)的从。

拓扑变换

莫比乌斯带是一种拓展图形,它们在图形被弯曲、拉大、缩小或任意的变形下保持不变,只要在变形过程中不使原来不同的点重合为同一个点,又不产生新点。换句话说,这种变换的条件是:在原来图形的点与变换了图形的点之间存在着一一对应的关系,并且邻近的点还是邻近的点。这样的变换叫做拓扑变换。拓扑有一个形象说法——橡皮几何学。因为如果图形都是用橡皮做成的,就能把许多图形进行拓扑变换。例如一个橡皮圈能变形成一个圆圈或一个方圈。但是一个橡皮圈不能由拓扑变换成为一个阿拉伯数字8。因为不把圈上的两个点重合在一起,圈就不会变成8,“莫比乌斯带”正好满足了上述要求。

旋转纬度的分析

传统的三维世界里,所有的维度都是直线式的,但如果将旋转视为一种纬度,则相对容易对莫比乌斯带进行解释。

两个旋转纬度的关系

垂直方向上增加维度的示意

如果垂直方向上旋转的度数继续增加,只会增加莫比乌斯带缠绕的圈数,并不会额外增加空间的维度。

有关的物体

和莫比乌斯带非常近似的一个几何学物体叫做克莱因瓶。一个克莱因瓶可以用粘贴两个莫比乌斯带的方法制作出来。但是如果物体不进行自我交叉,这个步骤在三维空间内是不可能完成的。

另外一个相近的结构是实射影平面。如果在实射影平面上有一个洞的话,从左侧看就会形成一个莫比乌斯带。或者把莫比乌斯带的边界进行有限定义,就会形成一个真投影屏面。更形象地说法是重建莫比乌斯带的边缘形成一个普通的环。有一种普遍的误解认为如果不进行平面的自我交叉就无法在三维空间内形成一个有普通环边缘的莫比乌斯带。事实上是可能的,方法是这样的:定义C为

面上的单位圆,现在连接C上面的对跖点,比如θ和

。当θ在0到

之间运动的时候,在xy面上方做这条线的反余切,其他情况则在面下做反余切。

艺术和科技

莫比乌斯带为很多艺术家提供了灵感,比如美术家莫里茨·科内利斯·埃舍尔就是一个利用这个结构在他木刻画作品里面的人,最著名的就是莫比乌斯二代,图画中表现一些蚂蚁在莫比乌斯带上面前行。

• 它也经常出现在科幻小说里面,比如亚瑟·克拉克的《黑暗之墙》。科幻小说常常想象我们的宇宙就是一个莫比乌斯带。由A.J.Deutsch创作的短篇小说《一个叫莫比乌斯的地铁站》为波士顿地铁站创造了一个新的行驶线路,整个线路按照莫比乌斯带方式扭曲,走入这个线路的火车都消失不见。另外一部小说《星际迷航:下一代》中也用到了莫比乌斯带空间的概念。

• 有一首小诗也描写了莫比乌斯带:

• 数学家断言:莫比乌斯带只有一边。如果你不相信,就请剪开一个验证,带子分离的时候却还是相连。

• 莫比乌斯带也被用于工业制造。一种从莫比乌斯带得到灵感的传送带能使用更长的时间,因为可以更好地利用整个带子,或者用于制造磁带,可以承载双倍的信息量。

• 有一座钢制的莫比乌斯带雕塑位于美国华盛顿的史密斯森林历史和技术博物馆

• 荷兰建筑师Ben Van Berkel以莫比乌斯带为创作模型设计了著名的莫比乌斯住宅。

• 在日本漫画《哆啦A梦》中,哆啦A梦有个道具的外观就是莫比乌斯带;在故事中,只要将这个环套在门把上,则外面的人进来之后,看到的依然是外面。

• 在电玩游戏“音速小子-滑板流星故事”中最后一关魔王战就是在莫比乌斯带形状的跑道上进行,如果不打败魔王,就会一直在莫比乌斯带上无限循环的跑下去。

• 1988年在日本上映的动画电影机动战士高达 逆袭的夏亚以莫比乌斯带作为对命运的隐喻:人类就好比行走在莫比乌斯带上的蚂蚁一般,永远逃不出这个怪圈,不断重复着相同的错误,类同的悲剧也在不断地上演。

• 电影的主题歌BEYOND THE TIME(メビウスの宇宙を越えて)亦呼应了这个主题(日文“メビウス”就是Möbius的意思)。

• jojo奇妙旅程第6部空条徐伦对c-moon一幕亦有于战斗中使用此结构。

• 韩国导演金基德2013年的电影《莫比乌斯》命名就取材于莫比乌斯环,象征人性周而复始的重复悲剧和错误。

• 网络上流传一部动画影片,用莫比乌斯带原理,来解释巴哈所著的逆行卡农作品。

• 《Bilibili拜年祭2017》中作品《再一次》以莫比乌斯带原理构筑了困住木琳与海阅的古堡。