当今的闭环自动控制技术都是基于反馈的概念以减少不确定性。反馈理论的要素包括三个部分:测量、比较和执行。测量关键的是被控变量的实际值,与期望值相比较,用这个偏差来纠正系统的响应,执行调节控制。在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。

PID控制器(比例-积分-微分控制器)是一个在工业控制应用中常见的反馈回路部件,由比例单元P、积分单元I和微分单元D组成。PID控制的基础是比例控制;积分控制可消除稳态误差,但可能增加超调;微分控制可加快大惯性系统响应速度以及减弱超调趋势。

这个理论和应用的关键是,做出正确的测量和比较后,如何才能更好地纠正系统。

PID(比例(proportion)、积分(integral)、微分(differential))控制器作为最早实用化的控制器已有近百年历史,现在仍然是应用最广泛的工业控制器。PID控制器简单易懂,使用中不需精确的系统模型等先决条件,因而成为应用最为广泛的控制器。

中文名

PID控制

别名

比例-积分-微分控制器

外文名

proportional-integral-derivative control

学    科

自动化控制

应用领域

工业控制器

特点

算法简单、鲁棒性好、可靠性高

释义

比例-积分-微分控制器

作用

测量和比较,纠正系统

学科

自动化控制

简称

PID控制

含义

PID控制器由比例单元(P)、积分单元(I)和微分单元(D)组成。其输入e(t)与输出u(t)的关系为:

u(t)=kp[e(t)+1/TI∫e(t)dt+TD*de(t)/dt]式中积分的上下限分别是0和t

因此它的传递函数为:G(s)=U(s)/E(s)=kp[1+1/(TI*s)+TD*s]

其中kp为比例系数;TI为积分时间常数;TD为微分时间常数。

用途

它由于用途广泛、使用灵活,已有系列化产品,使用中只需设定三个参数(Kp,Ti和Td)即可。在很多情况下,并不一定需要全部三个单元,可以取其中的一到两个单元,但比例控制单元是必不可少的。

首先,PID应用范围广。虽然很多工业过程是非线性或时变的,但通过对其简化可以变成基本线性和动态特性不随时间变化的系统,这样PID就可控制了。

其次,PID参数较易整定。也就是,PID参数Kp,Ti和Td可以根据过程的动态特性及时整定。如果过程的动态特性变化,例如可能由负载的变化引起系统动态特性变化,PID参数就可以重新整定。

第三,PID控制器在实践中也不断的得到改进

PID在控制非线性、时变、耦合及参数和结构不确定的复杂过程时,工作得不是太好。最重要的是,如果PID控制器不能控制复杂过程,无论怎么调参数都没用。

虽然有这些缺点,但简单的PID控制器有时却是最好的控制器。

PID控制器

意义

工业自动化水平已成为衡量各行各业现代化水平的一个重要标志。同时,控制理论的发展也经历了古典控制理论、现代控制理论和智能控制理论三个阶段。自动控制系统可分为开环控制系统和闭环控制系统。一个控制系统包括控制器、传感器、变送器、执行机构、输入输出接口。控制器的输出经过输出接口、执行机构,加到被控系统上;控制系统的被控量,经过传感器,变送器,通过输入接口送到控制器。不同的控制系统,其传感器、变送器、执行机构是不一样的。比如压力控制系统要采用压力传感器,电加热控制系统的传感器是温度传感器。PID控制及其控制器或智能PID控制器已经很多,产品已在工程实际中得到了广泛的应用,有各种各样的PID控制器产品,各大公司均开发了具有PID参数自整定功能的智能调节器(intelligent regulator),其中PID控制器参数的自动调整是通过智能化调整或自校正、自适应算法来实现。有利用PID控制实现的压力、温度、流量、液位控制器,能实现PID控制功能的可编程控制器(PLC),还有可实现PID控制的PC系统等等。可编程控制器(PLC)是利用其闭环控制模块来实现PID控制,而可编程控制器(PLC)可以直接与ControlNet相连,还有可以实现PID控制功能的控制器,它可以直接与ControlNet相连,利用网络来实现其远程控制功能。

系统分类

开环控制

开环控制系统(open-loop control system)是指被控对象的输出(被控制量)对控制器(controller)的输入没有影响。在这种控制系统中,不依赖将被控量返送回来以形成任何闭环回路。

PID控制器

闭环控制

闭环控制系统(closed-loop control system)是指被控对象的输出(被控制量)会反送回来影响控制器的输入,形成一个或多个闭环。闭环控制系统有正反馈和负反馈,若反馈信号与系统给定值信号相反,则称为负反馈(Negative Feedback),若极性相同,则称为正反馈,一般闭环控制系统均采用负反馈,又称负反馈控制系统。闭环控制系统的例子很多。比如人就是一个具有负反馈的闭环控制系统,眼睛便是传感器,充当反馈,人体系统能通过不断的修正最后作出各种正确的动作。如果没有眼睛,就没有了反馈回路,也就成了一个开环控制系统。另例,当一台真正的全自动洗衣机具有能连续检查衣物是否洗净,并在洗净之后能自动切断电源,它就是一个闭环控制系统。

阶跃响应

阶跃响应是指将一个阶跃输入(step function)加到系统上时,系统的输出。稳态误差是指系统的响应进入稳态后,系统的期望输出与实际输出之差。控制系统的性能可以用稳、准、快三个字来描述。稳是指系统的稳定性(stability),一个系统要能正常工作,首先必须是稳定的,从阶跃响应上看应该是收敛的;准是指控制系统的准确性、控制精度,通常用稳态误差(Steady-state error)来描述,它表示系统输出稳态值与期望值之差;快是指控制系统响应的快速性,通常用上升时间来定量描述。

调节方法

PID是工业生产中最常用的一种控制方式,PID调节仪表也是工业控制中最常用的仪表之一,PID适用于需要进行高精度测量控制的系统,可根据被控对象自动演算出最佳PID控制参数。

PID参数自整定控制仪可选择外给定(或阀位)控制功能。可取代伺服放大器直接驱动执行机构(如阀门等)。PID外给定(或阀位)控制仪可自动跟随外部给定值(或阀位反馈值)进行控制输出(模拟量控制输出或继电器正转、反转控制输出)。可实现自动/手动无扰动切换。手动切换至自动时,采用逼近法计算,以实现手动/自动的平稳切换。PID外给定(或阀位)控制仪可同时显示测量信号及阀位反馈信号。

PID光柱显示控制仪集数字仪表与模拟仪表于一体,可对测量值及控制目标值进行数字量显示(双LED数码显示),并同时对测量值及控制目标值进行相对模拟量显示(双光柱显示),显示方式为双LED数码显示+双光柱模拟量显示,使测量值的显示更为清晰直观。

PID参数自整定控制仪可随意改变仪表的输入信号类型。采用最新无跳线技术,只需设定仪表内部参数,即可将仪表从一种输入信号改为另一种输入信号。

PID参数自整定控制仪可选择带有一路模拟量控制输出(或开关量控制输出、继电器和可控硅正转、反转控制)及一路模拟量变送输出,可适用于各种测量控制场合。

PID参数自整定控制仪支持多机通讯,具有多种标准串行双向通讯功能,可选择多种通讯方式,如RS-232、RS-485、RS-422等,通讯波特率300~9600bps仪表内部参数自由设定。可与各种带串行输入输出的设备(如电脑、可编程控制器、PLC等)进行通讯,构成管理系统。

PID控制器

原理

PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。

比例P控制

比例控制是一种最简单的控制方式。其控制器的输出与输入误差信号成比例关系。当仅有比例控制时系统输出存在稳态误差。

积分I控制

在积分控制中,控制器的输出与输入误差信号的积分成正比关系。对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统。为了消除稳态误差,在控制器中必须引入“积分项”。积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。

微分D控制

在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。其原因是由于存在有较大惯性组件(环节)或有滞后(delay)组件,具有抑制误差的作用,其变化总是落后于误差的变化。解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。这就是说,在控制器中仅引入“比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而需要增加的是“微分项”,它能预测误差变化的趋势,这样,具有比例+微分的控制器,就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改善系统在调节过程中的动态特性。

参数整定

PID控制器的参数整定是控制系统设计的核心内容。它是根据被控过程的特性确定PID控制器的比例系数、积分时间和微分时间的大小。

PID控制器参数整定的方法很多,概括起来有两大类:一是理论计算整定法。它主要是依据系统的数学模型,经过理论计算确定控制器参数。这种方法所得到的计算数据未必可以直接用,还必须通过工程实际进行调整和修改。二是工程整定方法,它主要依赖工程经验,直接在控制系统的试验中进行,且方法简单、易于掌握,在工程实际中被广泛采用。

PID控制器参数的工程整定方法,主要有临界比例法、反应曲线法和衰减法。三种方法各有其特点,其共同点都是通过试验,然后按照工程经验公式对控制器参数进行整定。但无论采用哪一种方法所得到的控制器参数,都需要在实际运行中进行最后调整与完善。一般采用的是临界比例法。

利用该方法进行PID控制器参数的整定步骤如下:

1)首先预选择一个足够短的采样周期让系统工作;

2)仅加入比例控制环节,直到系统对输入的阶跃响应出现临界振荡,记下这时的比例放大系数和临界振荡周期;

3)在一定的控制度下通过公式计算得到PID控制器的参数。

理论简介

经典控制理论在实际控制系统中的典型应用就是PID控制器。在早期的控制系统中,PID控制也是唯一的自动控制方式。伴随着计算机技术的发展,现代控制理论在实用性方面获得了很大进展,解决了许多经典控制理论不能解决的问题。这一现象使很多人认为,新的理论和技术可以取代PID控制。但后来的发展说明,PID控制并没有让位。目前,PID控制仍然是在工业控制中应用得最为广泛的一种控制方法。其原因是:(1)其结构简单,鲁棒性和适应性较强;(2)其调节整定很少依赖于系统的具体模型;(3)各种高级控制在应用上还不完善;(4)大多数控制对象使用常规PID控制即可以满足实际的需要;(5)高级控制难以被企业技术人员掌握。

但由于实际对象通常具有非线性、时变不确定性、强干扰等特性,应用常规PID控制器难以达到理想的控制效果;在生产现场,由于参数整定方法繁杂,常规PID控制器参数往往整定不良、性能欠佳。这些因素使得PID控制在复杂系统和高性能要求系统中的应用受到了限制。

控制原理

图1 PID控制系统原理框图

常规PID控制系统原理如图1所示,这是一个典型的单位负反馈控制系统。系统由PID控制器和被控对象组成。

控制规律

PID控制器是一种线性控制器,它根据给定值r(t)与实际输出值c(t)构成偏差:e(t)=r(t)-c(t)。将偏差的比例(P)、积分(I)和微分(D)通过线性组合构成控制量,对受控对象进行控制。其控制规律为:

传递函数为: ,式中,Kp为比例系数,Ti为积分时间常数,Td为微分时间常数;Ki=Kp/Ti,为积分系数;Kd=Kp*Td,为微分系数。

各环节作用

PID控制器各校正环节的作用如下:

比例环节:即时成比例地反应控制系统的偏差信号e(t),偏差一旦产生,控制器立即产生控制作用以减小误差。当偏差e=0时,控制作用也为0。因此,比例控制是基于偏差进行调节的,即有差调节。

积分环节:能对误差进行记忆,主要用于消除静差,提高系统的无差度,积分作用的强弱取决于积分时间常数Ti,Ti越大,积分作用越弱,反之则越强。

微分环节:能反映偏差信号的变化趋势(变化速率),并能在偏差信号值变得太大之前,在系统中引入一个有效的早期修正信号,从而加快系统的动作速度,减小调节时间。

从时间的角度讲,比例作用是针对系统当前误差进行控制,积分作用则针对系统误差的历史,而微分作用则反映了系统误差的变化趋势,这三者的组合是“过去、现在、未来”的完美结合。

性能指标

衡量一个PID控制系统性能好坏的指标主要有:上升时间、超调量、调节时间 和稳态误差。其中:

(1)上升时间 是指系统实际输出从正常输出的10%上升到正常输出的90%时所需的时间;

(2)调节时间 是指系统实际输出值稳定在正常输出值的5%或2%范围以内时所需的时间;

(3)超调量 是指系统实际输出的最大值与正常值的差与正常值的比值;

(4)稳态误差 是指系统达到稳态时的输出值与正常值差的绝对值与正常值的比值。

这四个参数反映了系统的响应能力和稳定性,通过它们就可以判定一个系统性能的好坏。

参数选取

长期以来,在设计和应用PID控制器的过程中,PID参数的选取一直是一个难题,这是因为:

(1)比例作用使得控制器的输入输出成比例关系,为了尽量减小偏差,同时也为了加快响应速度,缩短调节时间,就需要增大Kp。但比例作用过大会使系统动态性能变坏,甚至会使闭环系统不稳定。

(2)积分作用的引入有利于消除稳态误差,但使系统的稳定性下降。尤其在大偏差阶段的积分往往会使系统产生过大的超调,调节时间变长。

(3)微分作用的引入使系统能够根据偏差变化的趋势做出反应,适当的微分作用可加快系统响应,有效地减小超调,改善系统的动态特性,增加系统的稳定性。不利之处是微分作用对干扰敏感,使系统抑制干扰能力降低。

因此,PID控制器的参数选取必须兼顾动态与静态性能指标要求,只有合理地整定Kp、Ki、Kd三个参数,才能获得比较满意的控制性能。

整定方法

所谓PID控制器参数整定就是设置和调整控制器的参数,使控制系统的过渡过程达到满意的品质。参数整定方法主要有以下几类:基于被控过程对象参数辨识的整定方法,这种方法首先要辨识出对象的参数模型,再利用极点配置整定法、相消原理法等理论计算整定法整定;基于抽取对象输出响应特征参数整定法,如Z-N参数整定法(也称临界比例度法);参数优化方法;基于模式识别的专家系统法以及基于控制器自身控制行为的控制器参数在线整定方法。下面介绍几种常用的整定方法。

凑式法

所谓凑试法是先将调节器的参数根据经验设定在某一数值上,然后在闭环系统中加扰动,观察过渡过程的曲线形状,若曲线不够理想,则以调节器P、I、D参数对系统过渡过程的影响为依据,按照先比例,后积分,最后微分的顺序,将调节器参数逐个进行反复凑试,直到获得满意的控制质量。

具体步骤如下:

(1)置调节器积分时间,微分时间,在比例度 按经验设置的初始条件下,将系统投入运行,整定比例度。若曲线振荡频繁,则加大比例度;若曲线超调量大,且趋于非周期过程,则减小比例度,求得满意的4:1过渡过程曲线。

(2)引入积分作用〔此时将上述比例度 增大1.2倍〕。将界由大到小进行整定。若曲线波动较大,则应增大积分时间;若曲线偏离给定值后长时间回不来,则需减小,以取得较好的过渡过程曲线。

(3)若需引入微分作用,则将 按经验值或按 设置,并由小到大加入。若曲线超调量大而衰减慢,则需增大;若曲线振荡厉害,则应减小。观察曲线,适当调整比例度 和,直到求得满意的过渡过程曲线。

临界比例度法(Z-N法)

本方法是由齐格勒(Ziegler)和尼柯尔斯(Nichols)提出的一种PID参数工程整定方法。这种方法是基于闭环响应的方法,在闭合的控制系统里,将调节器置于纯比例作用下,从大到小逐渐改变调节器的比例度,得到等幅振荡的过渡过程,此时的比例度称为临界比例度,用 表示,相邻两个波峰间的时间间隔,称为临界振荡周期,用 表示,通过计算即可求出调节器的整定参数。这种方法基于频率响应的分析。其步骤如下:

(1)将调节器的积分时间 置于最大( ),微分时间 置零( ),比例度 适当,将系统投入运行。

(2)将比例度 逐渐减小,得到等幅振荡过程,记下临界比例度 和临界振荡周期 值。

(3)根据、值,采用图2中的经验公式,计算出调节器各个参数,即、 、的值。

衰减曲线法

衰减曲线法是在总结临界比例度法的基础上,经过反复实验提出来的。其具体的整定步骤如下(以4:1衰减过程为例,10:1衰减过程类似):

(1)先把过程控制系统中调节器参数置成纯比例作用,使系统投入运行,再把比例度 从大到小逐渐调小,直到出现所要求的4:1衰减过程曲线,此时的比例度为4:1衰减比例度,两个相邻波峰间的间隔称为4:1衰减振荡周期。

2、根据、使用图3所示公式,即可计算出调节器的各整定参数值。

3、按“先P后I最后D”的操作程序,将所求得的整定参数设置在调节器上。再观察运行曲线,若不太合理,可做适当调整。

以上介绍了几种常用的PDI控制器参数整定方法,除上述方法外,还有多种整定方法,如过程反应曲线法,又称C-C法:继电型PID自整定方法,它的基本思想是在控制系统中设置两种模态:测试模态和调节模态。在测试模态,由一个继电非线性环节来测试系统的振荡频率和增益,而在调节模态下,由系统的特征参数首先得出PID控制器,再通过此控制器调节系统的动态性能。如果系统的测试发生变化,则需要重新进入测试模态进行测试,测试完成之后在回到调节模态进行控制;此外,还有基于增益优化的整定法、基于总和时间常数的整定法和基于交叉两点法、ISTE最优设定法等。