主变压器,简称主变(GSU),是一个单位或变电站中主要用于输变电的总降压变压器,也是变电站的核心部分。变压器是电力机车牵引供电系统的核心设备, 也是保证牵引供电系统安全稳定运行的关键设备。

主变压器的容量一般比较大,并且要求工作的可靠性高。尽管主变压器故障率不高,但是一旦出现故障就会造成重大的损失。轻则可能会造成设备故障;重则会引发火情,危及正常的运输安全。因此,分析变压器的故障原因,并采取相应的防范措施具有非常重要的意义。

中文名

主变压器

别名

主变

英文简称

GSU transformer,GSU

外文名

generator step-up transformer

主要故障类型

1.主变压器漏油

渗漏油故障是油浸式变压器的惯性故障之一,变压器渗漏油不仅影响变压器及相关设备的外观,还会污染机车内部电缆及设备,迫使变压器不得不停电检修,甚至危及行车安全。因此,解决渗漏油问题是提高主变压器质量的关键项之一。电力机车主变压器渗漏油的部位主要有连接部位、密封垫的交接面和箱体及附件焊接部位。

2.散热器堵塞造成主变压器油温升高

油温高主要有两部分原因:一部分散热器由于风路翅片间隙设计较小(片间为矩形孔,规格为10.5mm×2.5mm),散热片间堵塞严重,由于机车上盖安装的散热风道滤尘网强度不高,破裂后卡滞在散热片间,影响了散热器通风量;另一部分散热器的上部翅片大面积倒塌,堵塞了翅片之间的间隙,使散热器通风量减少,影响散热效果。

3.固体材料绝缘效果下降引起的故障

固体绝缘材料老化使变压器原有的绝缘性能降低,易产生局部放电,造成变压器的击穿损坏。主要有以下三方面的原因:

(1)热原因造成固体材料绝缘效果下降

变压器长期超负荷运行,使温度超过绝缘材料允许的范围,造成固体绝缘材料高分子链断裂,结果使材料变脆、老化,从而导致绝缘性能降低。绝缘油过热产生的H₂与固体绝缘材料在高温时产生的 CO 、CO₂及C2H4、H₂气体导致绝缘材料过热老化。

(2)电气原因引发固体材料绝缘效果下降

在正常运行中,主变压器出口发生突发性三相短路,变压器绝缘因大电流产生的电动力发生位移,造成线圈变形。由于自然原因及人为因素引起的出口三相短路,造成的危害极大,不仅会给主变压器带来致命损伤,且可能导致大面积停电。局部放电能引发绝缘表面树枝放电,绝缘材料承受高压电场时在其表面或内部空隙会发生屡次放电,所产生的离子电弧和离子运动将严重侵蚀绝缘材料,使其绝缘性能下降。

(3)环境因素引起固体材料绝缘效果下降

若主变压器周围存在灰尘、水分、腐蚀性气体、放射物和油类等,都会加速固体绝缘材料的老化,影响绝缘效果。杂质离子容易造成离子电流和离子碰撞,因此绝缘材料还要起到抗周围灰尘、气体侵蚀的作用,而且也要保护关联的导体。

4.绝缘油介损超标引起的故障

(1)极性溶质引起油介质损耗值

水、酸、金属离子等是引起变压器油介质损耗值增大的极性溶质。

①若绝缘油因进水受潮,则溶解的水分将受电场作用,降低绝缘油的绝缘性能,故微量的溶解水分会导致油介质损耗值增大。

②若酸值变化过大,可能引起油介质损耗值的增大。变压器运行中氧化产生的有机酸是主要的酸性物质来源,还有变压器油炼制过程中残留的少量无机酸。

③金属微粒对油介质损耗值的作用除了降低本身绝缘性能外,还有其氧化的催化作用,使绝缘油在运行条件下,在高温、强电场、氧气的作用下加快老化速率, 派生出大量如水分和有机酸的极性物质, 增强了变压器油的导电性,因而导致了油介质损耗值的增大。

(2)油中胶体引起介质损耗值超标

①主变压器出厂后油箱内壁附着残油或本身内壁材料附有溶胶杂质,或循环回路和储油罐内有溶胶杂质,变压器油注入或循环过程中溶胶杂质溶入其中形成胶体。例如真空加热滤油过程中橡胶油管与油接触的含极性物质醇酸树脂的绝缘漆溶解,均会使变压器中的油介质损耗值增大。

②微生物细菌感染对主变压器油介质损耗值的影响。变压器在安装和大修过程中,有微生物侵入油体,其中能在油中生存的主要是生命力很强的细菌类、霉菌类和酵母菌类微生物,当油温适合及油 pH 值大于5时,微生物易于生存,且其自身溶解的水及有机碳化物均为其存活提供了基本条件,一般的微生物分子大小在 1~ 100 μm,易使绝缘油形成胶体,造成微生物污染。一般而言,由于温度、湿度等条件,在变压器厂的储存油罐中常发生微生物感染,原因是较差的防潮效果和未采取滤油措施,再加上混合有油罐残留水,密封不严格,新老油交叉感染,这些对绝缘油的质量影响均十分明显

水力发电

▪ 水能利用▪ 水能资源▪ 河流水能资源▪ 海洋能资源
▪ 再生能源▪ 可开发水能资源▪ 技术可开发的水能资源▪ 经济可开发的水能资源
▪ 水能经济▪ 水电站经济分析▪ 水力发电站▪ 梯级水电开发
▪ 跨流域水电开发▪ 水电工程规划▪ 日调节▪ 周调节
▪ 季调节▪ 年调节▪ 多年调节▪ 等流量径流调节
▪ 变流量径流调节▪ 变出力径流调节▪ 补偿调节▪ 梯级水电站补偿调节
展开表格

其他科技名词

▪ 保证电能▪ 季节性电能▪ 装机容量▪ 工作容量
▪ 备用容量▪ 重复容量▪ 空闲容量▪ 可用容量
▪ 替代容量▪ 年利用小时▪ 电力电量平衡▪ 设计负荷水平
▪ 坝式水电站▪ 引水式水电站▪ 混合式水电站▪ 集水网道式水电站
▪ 高水头水电站▪ 中水头水电站▪ 低水头水电站▪ 径流式水电站
▪ 大型水电站▪ 中型水电站▪ 小型水电站▪ 潮汐电站
展开表格

以上科技名词按拼音字母排序,排名不分先后

变电

▪ 变电站▪ 枢纽变电站▪ 区域变电站▪ 地区变电站
▪ 终端变电站▪ 用户变电站▪ 地下变电站▪ 有人值班变电站
▪ 无人值班变电站▪ 遥控变电站▪ 主控变电站▪ 子变电站
▪ 牵引变电站▪ 敞开式变电站▪ 气体绝缘金属封闭变电站▪ 户内变电站
▪ 户外变电站▪ 升压变电站▪ 降压变电站▪ 开关站
▪ 变电站总布置▪ 联相布置▪ 分相布置▪ 混相布置
展开表格

其他科技名词

▪ 硬母线▪ 软母线▪ 封闭母线▪ [变电站]间隔
▪ 馈线间隔▪ 出线馈线▪ 进线馈线▪ 相间净距
▪ 相对地净距▪ 作业净距▪ [变电站]电缆槽道▪ [变电站]电缆管道
▪ 电缆隧道▪ 电缆架▪ 电缆托架▪ 泄油池
▪ 防火墙▪ 接地回路连接器▪ 变电站控制室▪ 变电站继电保护室
▪ 变电站继电保护小室▪ 变电站自动化系统▪ 电力变压器▪ 

主变压器

展开表格

以上科技名词按拼音字母排序,排名不分先后

组成

  1. 器身:器身直接进行电磁能量转换,它由铁心、线圈、引线及绝缘等组成。
  2. 油箱和箱盖:主要由箱体、箱盖、箱底、附件(如50活门、油样活门、放油塞、接地螺栓等)组成。
  3. 保护装置:主要由储油柜、油表、净油器、流动继电器、吸湿器、讯号式温度计等组成。
  4. 冷却系统:主要由冷却器、潜油泵、通风机(与牵引电动机共通风机) 组成。
  5. 出线套管:由25/300穿缆式套管和BF-6/2000、BF-1/1000、BF- l/600、BF-1/300等五种套管组成。
  6. 变压器油。

容量选择

(1)变压器的容量选择的一般原则

变压器容量应根据计算负荷选择。确定一台变压器的容量时,应首先确定变压器的负荷率。变压器当空载损耗等于负荷率平方乘以负载损耗时效率最高,在效率最高点变压器的负荷率为63%~67%之间,对平稳负荷供电的单台变压器,负荷率一般在85%左右。但这仅仅是从节电的角度出发得出的结论,是不够全面的。值得考虑的重要元素还有运行变压器的各种经济费用,包括固定资产投资、年运行费、折旧费、税金、保险费和一些其他名目的费用。选择变压器容量时,适当提高变压器的负荷率以减少变压器的台数或容量,即牺牲运行效率,降低一次投资,也只是一种选择。

(2)当安装两台及以上主变时,每台容量的选择应按照其中任何一台停运时,其余的容量至少能保证所供一级负荷或为变电所全部负荷的60~75%,通常一次变电所采用75%,二次变电所采用60%。

变压器一次侧功率因数与负荷率有关,满载运行时一次侧功率因数比二次侧低3~5%,负荷率小于60%时一次侧功率因数比二次侧低11%~18%。负荷率高对高压侧提高功率因数有利。负荷率高,断路器容量也大,投资也会有所增加。

(3)低压为0.4kV变电所中单台变压器的容量不宜大于1600kVA,当用电设备容量较大,负荷集中且运行合理时可选用2000kVA及以上容量的变压器。近几年来有些厂家已能生产大容量的ME、AH型低压断路器及限流低压断路器,在民用建筑中采用1250KVA及1600KVA的变压器比较多,特别是1250KVA更多些,故推荐变压器的单台容量不宜大于1250KVA。

应选用节能型变压器,对事故时出现的过负荷应考虑变压器的过载能力,必要时可采取强迫风冷措施。当需要提高单相短路电流值或需要限制三次谐波含量或三相不平衡负荷超过变压器每相额定容量15%以上时,宜选用接线为D,Yn11型变压器。

采用非燃性油变压器,可设置在独立房间内或靠近低压侧配电装置,但应有防止人身接触的措施。非燃油变压器应具有不低于IP2X防护外壳等级。室内设置的可燃油浸电力变压器应装设在单独的小间内。变压器高压侧(含引上电缆)间隔两侧宜安装可拆卸式护栏。

变压器与低压配电室以及变压器室之间应设有通道实体门。如果采用木制门应在变压器一侧包铁皮。变压器基座应设固定卡具等防震措施。变压器噪声级应严格控制,必要时可采用加装减噪垫等措施,以满足国家规定的环境噪音卫生标准(相关的生活工作房间内),白天≤45dB(A),夜间≤35dB(A)。

变压器的过电流保护宜采用三相保护。当高压侧采用熔断器作为变压器保护时,其熔体电流应按变压器额定电流的1.4~2倍选择。变压器的低压侧的总开关和母线断路器应具有选择性。变配电室的低压侧母线应装设低压避雷器。单台变压器的容量不宜大于1600kVA,当用电设备容量较大,负荷集中且运行合理时可选用2000kVA及以上容量的变压器。采用干式变压器时,应配装绕组热保护装置,其主要功能应包括:温度传感器断线报警、启停风机、超温报警/跳闸、三相绕组温度巡回检测最大值显示等。

(4)变压器容量的确定

①冲击电流的因素单台电动机、电弧焊或电焊变压器支线,其尖峰电流为

Ijf=KIN(A)

式中IN──电动机、电弧焊机或电焊变压器的高压侧额定电流。

K──起动电流倍数,即起动电流与额定电流之比。

②接有多台电动机的配电线路,只考虑一台电动机起动时的尖峰电流:

Ijf=(KIN)max+Ifs(A)

式中(KIN)max──起动电流最大的一台电动机起动时的起动电流。

Ifs──配电线路上除去起动电机的计算电流。

③对于自起动的电动机组,其尖峰电流为所有参与起动的电动机电流之和。

结构型式

(1)建筑要求多层或高层主体建筑内变电所,变压器一般可采用环氧树脂浇注型铜芯绕组干式变压器并设有温度监测及报警装置。在多尘或有腐蚀性气体严重影响变压器安全运行的场所,应选用防尘型或防腐型变压器。特别潮湿的环境不宜设置浸渍绝缘干式变压器。

设置在二层以上的三相变压器,应考虑垂直与水平运输对通道及楼板荷载的影响,如采用干式变压器,其容量不宜大于630kVA。居住小区变电所内单台变压器容量不宜大于630kVA。

(2)内设置的可燃油浸电力变压器应装设在单独的小间内。变压器高压侧间隔两侧宜安装可拆卸式护栏。

变压器与低压配电室以及变压器室之间应设有通道实体门。如采用木制门应在变压器一侧包铁皮。变压器基座应设固定卡具等防震措施。变压器噪声级应严格控制,必要时可采用加装减噪垫等措施,以满足国家规定的环境噪音卫生标准,相关的生活工作房间内白天≤45dB(A),夜间≤35dB(A)。

高压配电柜选用下进下出的接线方式,在高压配电室下设电缆夹层。低压配电柜采用上进上出的接线方式,在柜顶上方设电缆桥架布线。上进上出与下进下出的接线方式各有优缺点:上进上出可以省做结构层,但它需要电缆桥架,安装要求极为严格。下进下出的接法必须做结构层,不需要电缆桥架。高低压配电室均应设有气体灭火和排风系统。

对于就地检修的室内油浸变压器,室内高度可按吊芯所需要的最小高度再加0.7m;宽度可按变压器两侧各加0.8m确定。多台干式变压器布置在同一房间内时,变压器防护外壳间的净距不应小于安全距离。

(3)调压当用户系统有调压要求时,应选用有载自动调压电力变压器。对于新建的电力变电所建议采用有载自动调压变压器,有利于网络运行的经济性。虽然暂时投资稍高一些,但是在短时间内就可以收回所附加的投资。

当要求有三种电压的变电所,而且通过主变压器各侧线圈的功率均达到该变压器容量的15%以上,主变压器宜采用三线圈变压器。如220kV、110kV、35kV时,通常采用三绕组变压器。

(4)当出现下列情况可设专用变压器:当动力和照明采用共用变压器严重影响照明质量及灯泡寿命时,可设专用变压器。当季节性的负荷容量较大时(如大型民用建筑中的空调冷冻机等负荷),可设专用变压器。接线为Y,yno的变压器,当单相不平衡负荷引起的中性线电流超过变压器低压绕组额定电流的25%时,宜设单相变压器。出于功能需要的某些特殊设备(如容量较大的X光机等)宜设专用变压器。

(5)当需要提高单相短路电流值或需要限制三次谐波含量或三相不平衡负荷超过变压器每相额定容量15%以上时,宜选用接线为D,Yn11型变压器。

(6)因IT系统的带电部分与大地不直接连接,因此照明不能和动力共用变压器,必须设专用照明变器。

数量确定

(1)主变压器台数的确定原则是为了保证供电的可靠性。当符合下列条件之一时,宜装设两台及以上变压器。

①有大量一级负荷及虽为二级负荷但从保安需要设置时(如消防等)。

②季节性负荷变化较大时。

③集中负荷较大时。

对大型枢纽变电所,根据工程的具体情况可以安装2~4台主变压器。

装设多台变压器时,宜根据负荷特点和变化适当分组以便灵活投切相应的变压器组。变压器应按分列方式运行。变压器低压出线端的中性线和中性点接地线应分别敷设。为测试方便,在接地回路中,靠近变压器处做一可拆卸的连接装置。

(2)一般三级负荷或容量不太大的动力与照明宜共负荷只用一台变压器。

(3)当属下列情况之一时,可设专用变压器

①当照明负荷较大或动力和照明采用共用变压器严重影响照明质量及灯泡寿命时,可设照明专用变压器。

②单台单相负荷较大时,宜设单相变压器。

③冲击性负荷较大,严重影响电能质量时,可设冲击负荷专用变压器。

④当季节性负荷(如空调设备等)约占工程总用电负荷的1/3及以上时,宜配置专用变压器。

并联运行

在变电室有两台或多台变压器同时运行时,必须满足以下的条件:

(1)各变压器的一次和二次额定电压必分别相等。例如一次高压均为10kV,低压均为0.4kV。其误差不应大于±5%。如果两台变压器的变压比不同,则必然在二次绕组内产生环流,很容易导至变压器过热而烧毁。

(2)并联的各变压器的短路电压必须相等。短路电压也称作阻抗电压。由于并联运行的变压器的负荷是按照其阻抗电压值成反比例分配的,阻抗电压小的变压器必然会因为分配的电压过高而损坏。通常允许差值为不大于±10%。

(3)并联各变压器的连接组别必相同。也就是各变压器的一次或二次电压的相序必须分别对应,否则根本不能并列运行。例如:当D,yn11连接与Y,yno连接的两台变压器并联了,在它们对应的二次侧将出现30°的相位差,使二次绕组之间出现电位差Δ从而产生很大的环流。

(4)并联的各变压器的变压器的额定容量也应该尽可能地相似,通常容量之比不宜超过1:3。这主要是因为变压器的容量相差过大会因内部阻抗不同或其他特性不而产生环流,而影响变压器的使用寿命。