又称胶凝剂,是一种能增加胶乳、液体黏度的物质,用于食品时又称糊料。增稠剂可以提高物系黏度,使物系保持均匀稳定的悬浮状态或乳浊状态,或形成凝胶;大多数增稠剂兼具乳化作用。可分为天然和合成两大类。天然品大多数从含多糖类黏性物质的植物和海藻类制取,如淀粉、阿拉伯胶、果胶、琼脂、明胶、海藻胶、角叉胶、糊精等,通用明胶、可溶性淀粉、多糖衍生物等可用于化妆品;合成品有羧甲基纤维素、丙二醇藻蛋白酸酯、甲基纤维素、淀粉磷酸钠、羧甲基纤维素钠、藻蛋白酸钠、酪蛋白、聚丙烯酸钠、聚氧乙烯、聚乙烯吡咯烷酮等。

增稠剂广泛用于食品(如在调味酱、果酱、冰淇淋、罐头等中添加提高食品黏度或形成凝胶的食品添加剂)、化妆品、洗涤剂、乳胶、印染、医药、橡胶、涂料等。

中文名

增稠剂

别名

胶凝剂、糊料等

作用

提高物系度,使物系保持均匀的稳定的悬浮状态或乳浊状态

分类

天然及合成两大类

常见种类

淀粉

制备方法

溶液聚合、本体聚合、乳液聚合及沉淀聚合等

应用领域

印染纺织

外文名

thickener

增稠剂概述

增稠剂是一种流变助剂,不仅可以使涂料增稠,防止施工中出现流挂现象,而且能赋予涂料优异的机械性能和贮存稳定性。对于黏度较低的水性涂料来说,是非常重要的一类助剂。

有水性和油性之分。尤其是水相增稠剂应用更为普遍。增稠剂实质上是一种流变助剂,加入增稠剂后能调节流变性,使胶黏剂和密封剂增稠,防止填料沉淀,赋予良好的物理机械稳定性,控制施工过程的流变性(施胶时不流挂、不滴淌、不飞液),还能起着降低成本的作用。

特别对于胶黏剂和密封剂的制造、储存、使用都很重要,能够改进和调节黏度,获得稳定、防沉、减渗、防淌、触变等性能。

食品级的增稠剂-素肉粉是一种水相增稠剂,同时它也是一种油相增稠剂,也就是说,它遇水可以大量的吸水,吸水30倍时可以形成凝胶,吸水50=-100倍时,可以成糊状、吸水100-200倍时,可以使水体及含蛋白、油脂的体系形成浓郁感,质感强烈。素肉粉是由海洋藻类及陆生植物魔芋提取,藻类在生长的过程中会通过光合作用,将海里的二氧化碳吸收,对环境有好处,在食品中添加素肉粉,也是一种爱地球、绿色环保的生存方式。

工业增稠剂起源于20世纪,1953年,Coodrich公司首先将第一种完全由人工合成的增稠剂——聚丙烯酸类增稠剂引入市场。20世纪60年代,国外开始将聚丙烯酸钠应用于食品方面。目前,W/O型聚丙烯酸胶乳作为水相增稠剂已经广泛应用到纺织印花浆、染整和工业涂料等领域。 

20世纪70年代中期,我国开始了合成增稠剂的研究工作。近年来,国内已经研究开发成功一些合成增稠剂,它们大部分属阴离子型合成增稠剂,如中科大研制的合成增稠剂KG-201以及沈阳化工院研制的合成增稠剂PF。交联型聚丙烯酸胶乳作为涂料印花增稠剂得到广泛应用,但是这类阴离子型增稠剂仍存在一些缺陷,如耐电解质性能、色浆触变性、印花时得色量等均不十分理想。20世纪80年代,聚氨酯缔合型增稠剂相继发展起来。但目前,世界上只有ICI、Du Pont、Sun Chemical、KYK等少数几家国际知名的大公司生产这种产品,其生产技术受到严密封锁,产品以垄断价格出售。我国对水性聚氨酯增稠剂的研究起步较晚,近年来国内也模仿国外品种,开发了一些产品,不过效果不理想,产品也未系列化,只能应用于一些低档产品中。

增稠机理

无机类增稠机理

用无机盐来做增稠剂的体系一般是表面活性剂水溶液体系,表面活性剂在水溶液中形成胶束,电解质的存在使胶束的缔合数增加,导致球形胶束向棒状胶束转化,使运动阻力增大,从而使体系的黏稠度增加。 

但当电解质过量时会影响胶束结构,降低运动阻力,从而使体系黏稠度降低,这就是所说的“盐析”。因此电解质加入量一般质量分数为1%~2%,而且和他类型的增稠剂共同作用,使体系更加稳定。 

纤维素类增稠剂

纤维素类增稠剂的增稠机理是:纤维素增稠剂分子的疏水主链与周围水分子通过氢键缔合,提高了聚合物本身的流体体积,减少了颗粒自由活动的空间,从而提高了体系黏度。也可以通过分子链的缠绕实现黏度的提高,表现为在静态和低剪切有高黏度,在高剪切下为低黏度。这是因为静态或低剪切速度时,纤维素分子链处于无序状态而使体系呈现高黏性;而在高剪切速度时,分子平行于流动方向作有序排列,易于相互滑动,所以体系黏度下降。 

天然胶增稠剂

天然胶增稠剂增稠机理是通过聚多糖中糖单元含有3个羟基与水分子相互作用形成三维水化网络结构,从而达到增稠的效果。[1]

主要应用

增稠剂的用途相当广泛,目前应用研究已经深入到印染纺织、水性涂料、医药、食品加工和日常用品等方面。 

印染纺织

纺织品及涂料印花要获得良好的印制效果和质量,很大程度上取决于印花色浆的性能,其中增稠剂的性能起着至关重要的作用。加入增稠剂可使印花产品给色量高,印花轮廓清晰,色泽鲜艳饱满,提高产品的透网性和触变性,给印染企业创造更大的利润空间,如研究者常对真丝织物进行上浆预处理,即在其表面均匀地覆盖一层糊料,通过阻塞纤维的缝隙来解决渗化问题,已取得一定的成效。印花色浆的增稠剂过去多用天然淀粉或海藻酸钠,由于天然淀粉成糊困难、海藻酸钠价格较贵等原因,现在逐渐被丙烯酸型印染增稠剂所代替。而阴离子型聚丙烯酸类是增稠效果最好的,也是目前应用范围最广泛的增稠剂,但是这类增稠剂仍然存在缺陷,如耐电解质性能、色浆触变性、印花时得色量等均不十分理想。改进的方法是在其亲水主链上引入少量疏水性基团,从而合成缔合型增稠剂。目前国内市场中的印花增稠剂根据原料和制备方法不同,可分为天然增稠剂、乳化增稠剂和合成增稠剂,其中合成增稠剂中的反相聚合产品占目前国内市场的大多数,因为其固含量可以高于50%以上,增稠效果非常好。 

水性涂料

涂料的主要功能是装饰及保护被涂物。适当地加入增稠剂,可以有效地改变涂料体系的流体特性,使之具有触变性,从而赋予涂料良好的贮存稳定性和施工性。好的增稠剂要达到如下要求:贮存时提高涂料黏度、抑制涂料的分离,高速涂装时要降低黏度,涂装后提高涂膜的黏度、防止流挂现象的发生等。传统的增稠剂经常使用水溶性的聚合物,例如,纤维素衍生物中的高分子羟乙基纤维素(HEC)等。SEM资料显示聚合增稠剂还可在纸制品涂膜过程中控制水分的保留,增稠剂的存在可使涂料纸表面呈现光滑和均匀。尤其是溶胀型乳液(HASE)增稠剂有优秀的抗飞溅能力,可以和其它种类增稠剂联合使用,大大减轻涂料纸表面的粗糙度。 

例如乳胶漆在生产、运输、贮存、施工过程中经常会遇到分水的问题,虽然可以通过提高乳胶漆的黏度及提高分散性来延缓分水,但是这样的调节作用往往有限,更重要的还是通过增稠剂的选择及其配用来解决这个问题。 

在食品加工中的作用

迄今世界上用于食品工业的食品增稠剂已有60余种,主要用来改善和稳定食品的物理性质或形态、增加食品的黏度、赋予食品黏滑适口的口感,并起到增稠、稳定、均质、乳化凝胶、掩蔽、矫味、增香、增甜等作用。增稠剂种类很多,分天然和化学合成两类。天然增稠剂主要从动植物中获取,化学合成的增稠剂有CMC-Na、藻酸丙二酯等。 

食品增稠剂是食品工业中最重要的辅料之一,它在食品加工中主要起稳定食品形态的作用,如保持悬浮浆液稳定、光洁程度稳定、乳化体系稳定等。此外,它可以改善食品的触感及加工食品的色、香、味以及料液等状态的稳定性。增稠剂在食品中的突出作用主要表现为:

(1)增稠、分散和稳定作用

食用增稠剂都是亲水性的高分子物质。溶于水中有很大的黏度,使体系具有稠厚感。黏度增加后,体系中的分散相不容易聚集和凝聚,因而可以使分散体系稳定。大多增稠剂具有表面活性剂的功能,可以吸附于分散相的表面,使其具有一定的亲水性而易于在水系中分散。增稠剂的分子量分布、浓度、溶液的温度、pH值机剪切速率都会对溶液的黏度产生影响。 

(2)胶凝作用

有些增稠剂,如明胶、琼脂等溶液,在温热条件下为黏稠流体,当温度降低时,溶液分子连接成网状结构,溶剂和其他分散介质全部被包含在网状结构之中,整个体系形成了没有流动性的半固体,即凝胶。很多食品的加工恰是利用了增稠剂的这个特性,如果冻、奶冻等。有些离子型的水溶性高分子增稠剂,如海藻酸钠,在有高价离子的存在下可以形成凝胶,而与温度没有关系。这为许多特色食品的加工带来了方便和帮助。值得关注的是,并不是所有的食品增稠剂都能形成凝胶,且它们的凝胶性应用于食品体系中也是不能互相代替的,原因在于各种增稠剂的成胶模式、质量、稳定性、口感极可接受性等特性并不完全相同。 

(3)凝聚澄清作用

大多增稠剂属于高分子材料物质。在一定条件下,可同时吸附多个分散介质使其聚集和被分离,而达到纯化或净化的目的。如在果汁中加入少量的明胶,就可以得到澄清的果汁。 

(4)保水作用

持水性增稠剂都是亲水性高分子,本身有较强的吸水性,将其添加于食品后,可以使食品保持一定的水分含量,从而使产品保持良好的口感。增稠剂的亲水作用,在肉制品、面制品中能起到很好的改良品质作用。如在面类食品中,增稠剂可以改善面团的吸水性,调制面团时,增稠剂可以加速水分向蛋白质分子和淀粉颗粒渗透的速度,有利于调粉过程。增稠剂能吸收几十倍乃至上百倍于其量的水分,并有持水性,这个特性可以改善面团的吸水量,增加产品重量。由于增稠剂有凝胶特性,使面制品黏弹性增强,淀粉α化程度提高,不易老化和变干。 

(5)控制结晶

使用增稠剂可赋予食品较高的黏度,从而使许多过饱和溶液或体系中不出现结晶析出或使结晶达到细化效果。如用于糖果、冷冻食品可提高膨胀度,降低冰晶析出的可能性,使产品口感细腻;控制糖浆制品的返砂现象,抑制冰淇淋食品中的冰晶岀现或在加工过程中生成的冰晶细微化,并包含大量微小气泡,使结构细腻均匀、口感光滑、外观整洁。 

(6)成膜、保鲜作用

食用增稠剂可以在食品表面形成一层非常光滑的保护性薄膜,保护食品不受氧气、微生物的作用。与食品表面活性剂并用,可用于水果、蔬菜的保鲜,并有抛光作用。还可以防止冰冻食品、固体粉末食品的表面吸湿而导致的质量下降。作被膜用的食品增稠剂有醇溶性蛋白、明胶、琼脂、海藻酸等。 

(7)起泡作用和稳定泡沫作用

增稠剂可以发泡,形成网络结构。它的溶液在搅拌时如同肥皂泡一样,可包含大量气体和液泡,使加工食品的表面黏性增加而使食品稳定。蛋糕、面包、冰淇淋等使用鹿角藻胶、槐豆胶、海藻酸钠、明胶等作起泡剂时,增稠剂可以提高泡沫量及泡沫的稳定性。如啤酒泡沫及瓶壁产生“连鬓子”均是使用了增稠剂的缘故。 

(8)黏合作用

香肠中使用槐豆胶、鹿角藻胶的目的是使产品成为一个集聚体,均质后组织结构稳定、润滑,并利用胶的强力保水性防止香肠在贮存中失重。阿拉伯胶可以作为片、粒状产品的结合剂,在粉末食品的颗粒化、食品用香料的颗粒化和其他用途中使用。 

(9)用于保健、低热食品的生产

许多增稠剂基本为天然胶质类大分子物质。在人体内几乎不被消化,而通过代谢过程排泄。所以在食品中用增稠剂代替部分糖浆、蛋白质后,很容易降低食物的热值。这种方法已应用在果酱、果浆、调料、点心、饼干、布丁等加工食品中,并向更广泛的方面继续发展。1961年,研究者发现果胶可以降低血中胆固醇,而且海藻酸钠也有这种作用。天然胶的疗效作用使它成为保健食品中的重要原料。 

(10)掩蔽与缓释作用

有些增稠剂对某些原料自身的不良气味具有吸附和掩蔽作用,以达到脱味、除腥的效果,如利用环状糊精进行的除味应用,而对有些挥发较快的香气和不稳定的营养成分具有缓释作用。 

日化行业

目前使用于日化行业的增稠剂达200多种,主要有无机盐类、表面活性剂类、水溶性高分子类和脂肪醇及脂肪酸类等。在日用品方面,用于洗洁精,可使产品透明、稳定、泡沫丰富、手感细腻、易于漂洗,另外还常应用于化妆品、牙膏等中。 

石油开采

石油开采中,为了获得高产而借用某种液体的传导力(如水力等)压裂流体层,该液体叫压裂液体或者压裂液。压裂的目的是在地层中形成具有一定尺寸和导流能力的裂缝,其成功与否与所用压裂液的性能有很大关系。压裂液包括水基压裂液、油基压裂液、醇基压裂液、乳化压裂液及泡沫压裂液等。其中水基压裂液具有成本低、安全性较高等优点,目前使用最广泛。 

增稠剂是水基压裂液中的主要添加剂,其发展经历了近半个世纪,但获得性能更好的压裂液增稠剂一直是国内外学者研究的方向。目前使用的水基压裂液聚合物增稠剂品种繁多,可分为天然聚多糖及其衍生物与合成聚合物两大类。随着石油开采技术的不断发展和开采难度的增加,人们对压裂液提出了更新更高的要求。由于比天然聚多糖类更能适应复杂的地层环境,合成聚合物增稠剂在高温深井压裂方面将发挥更大作用。 

其它

增稠剂也是水基压裂液中的主要添加剂,关系到压裂液的使用性能及压裂成败。此外,增稠剂也广泛应用于医药、造纸、陶瓷、皮革加工、电镀等方面。 

展望

增稠剂属于多品种、多功能的材料。目前已经开发出纤维素增稠剂、聚丙烯酸酯增稠剂、碱溶性丙烯酸增稠剂、聚氨酯增稠剂等系列产品。它们在成糊性、渗透性、透网性、流变性、触变性、曳丝性、抱水性、混悬性等方面性能突出,有着广泛的应用。最近的开发方向是液体缔合型无溶剂增稠剂,另外,对聚丙烯酸增稠剂添加某些物质进行共聚改性,与其它增稠剂复配也是目前研究的重要内容。随着增稠剂的不断开发,各生产厂家普遍认识到应用研究的重要意义。但与跨国公司相比,国内企业的产品在系列化和产品性能上还存在一定差距,一些产品开发还处于模仿阶段、今后应该集中精力开发特色产品,解决其乳液聚合反应及技术上的困难,改善其低伤害及耐剪切耐高温等性能,开发其潜在用途,降低造价,促进增稠剂发展。

制备方法

增稠剂的品种繁多,其制备方法因品种不同而有所差异。一般情况下,低分子增稠剂的制备比较简单,例如低分子无机增稠剂与表面活性剂配合增稠;醚类/氧化胺增稠剂通过氧化反应制得;酯类增稠剂可通过直接酯化得到等。而高分子增稠剂占据的市场比例较大,除无机高分子增稠剂与天然高分子增稠剂外,大多是通过乳液聚合、反相乳液聚合制备的,也有少数采用溶液聚合、本体聚合和沉淀聚合制备。 

溶液聚合

溶液聚合是指溶于某种溶剂的单体和引发剂等的聚合过程,其组成成分通常是聚合单体、油溶性/水溶性引发剂、溶剂/水。 

溶液聚合法以聚丙烯酸增稠剂的制备研究为主。特点就是制备过程中需要大量的溶剂溶解聚合物,这类溶剂大多不溶于水,且后期需要进行回收处理。因此,成本较高,而且不利于环境保护。 

本体聚合

本体聚合即在热源(光、热、辐射能等)的作用下,不加或加少量引发剂/催化剂引发/加快单体自身聚合的过程。该方法对单体的要求较小,且无需溶剂溶解,得到的产品具有杂质少,纯度高。近几年,有学者开始采用本体聚合(两步法)制备缔合型聚氨酯增稠剂,先本体聚合聚氨酯预聚体,最终用长链脂肪醇封端,获得产品。 

乳液聚合

乳液聚合是指单体在机械搅拌下,借助乳化剂使单体均匀地分散在水中形成乳液,再添加引发剂引发单体聚合。 

乳液聚合法可以适应较高的反应速度,并获得的聚合物分子量较高,生产容易控制,残留单体容易去除,基于这些优点,该制备法的研究发展较快。丙烯酸类增稠剂的增稠和悬浮性能优异,不仅如此,几乎与所有的非离子、阴离子、两性表面活性剂以及多种阳离子聚合物配合使用,因此受到研究学者的青睐。 

反相乳液聚合

反相乳液聚合是指在乳化剂作用下,不溶于水的有机溶剂与水溶性单体在水中形成油包水型乳液而进行的聚合。 

此法速率快、条件温和,得到高分子量且较纯净的产品。无论是增稠效果,还是耐电解质性能,其产品均优于乳液聚合产品。 

反相乳液聚合法与乳液聚合法制备的增稠剂类型相似,以聚丙烯酸类增稠剂为主,相对于乳液聚合,反相乳液聚合法更适合制备耐电解质增稠剂,在反相乳液聚合的基础上引入新技术,如通过辐射聚合制备印花增稠剂,使聚合速率可以人为控制,避免反应过快。 

沉淀聚合

沉淀法制备增稠剂的研究较少,通常是在有机溶剂(苯、甲苯或烷烃等)与丙烯酸单体混合液中,加沉淀剂制备前驱体沉淀物,再将前驱体进行干燥或锻烧的过程。

与反相乳液聚合法相比,沉淀聚合的产品增稠性能较差,对电解质敏感,若在聚合物中引入一些共聚单体(如甲基丙烯酸十八烷基酯),可提高其耐电解质性。

增稠剂种类

能够作为增稠剂的物质很多,最常使用的增稠剂约有40余种。现行国标《GB 2760-2014食品安全国家标准 食品添加剂使用标准》中共收录的增稠剂有55种,其分类有以下多种方式。 

按增稠剂的化学结构和组成分类,可将其分为多糖和多肽两大类。其中多糖类增稠剂包括淀粉类、纤维素类、果胶类、海藻酸类等,该类物质广泛分布于自然界中。多肽类增稠剂主要有明胶、酪蛋白酸钠和干酪酥等,这类物质来源有限,价格偏高,应用较少。 

按增稠剂的离子性质也可将其分为两大类,即离子增稠剂,如海藻酸、羧甲基纤维素钠和淀粉等;非离子型增稠剂,如丙二醇海藻酸钠、羟丙基淀粉等。 

按增稠剂的来源可分为天然增稠剂和合成增稠剂两大类。其中,天然增稠剂还可进一步分为动物性增稠剂(明胶、酪蛋白酸钠等)、植物性增稠剂(瓜儿豆胶、阿拉伯胶、果胶、琼脂、卡拉胶等)、微生物增稠剂(黄原胶、结冷胶等)及酶处理增稠剂(酶水解瓜儿豆胶、酶处理淀粉等)四大类。合成增稠剂主要为改性淀粉、改性纤维素、丙二醇海藻酸酯和黄原胶等。 

按增稠剂相对分子质量分类,有低分子增稠剂和高分子增稠剂:其中,低分子增稠剂和高分子增稠剂还可进一步按其分子中所含功能基团分类,主要有无机增稠剂、纤维素类、脂肪醇、脂肪酸类、醚类、聚丙烯酸酯和缔合型聚氨酯增稠剂类等。下面按相对分子质量对增稠剂逐一进行介绍: 

低分子增稠剂

(1)无机盐类增稠剂

用无机盐(如氯化钠、氯化钾、氯化铵、单乙醇胺氯化物、二乙醇胺氯化物、硫酸钠、磷酸钠、磷酸二钠和三磷酸五钠等)做增稠剂的体系,一般是表面活性剂水溶液体系,最常用的无机盐增稠剂是氯化钠,增稠效果明显。 

(2)脂肪醇、脂肪酸类增稠剂

脂肪醇、脂肪酸(如月桂醇、肉豆蔻醇、癸醇、己醇、辛醇、鲸蜡醇、硬脂醇、山嵛醇、月桂酸、亚油酸、亚麻酸、肉豆蔻酸、硬脂酸等)是带极性的有机物,可以把它们看成非离子表面活性剂,它们既有亲油基团,又有亲水基团。少量该类有机物的存在对表面活性剂的表面张力等性质有显著影响,其作用大小是随碳链加长而增大,一般来说呈线性变化关系。 

(3)烷醇酰胺类增稠剂

烷醇酰胺能在电解质存在下,进行增稠并且能达到最佳效果。各种不同的烷醇酰胺在性能上有很大差异,最常用的是椰油二乙醇酰胺。在单独使用和复配使用时效果不一样。这类增稠剂的缺点是烷醇酰胺的杂质中有游离胺,是亚硝胺的潜在来源。 

(4)醚类增稠剂

这类增稠剂属于非离子增稠剂,一般以脂肪醇聚氧乙烯醚硫酸盐(AES)为主,通常情况下,仅用无机盐即能调成合适的黏度。另外其增稠效果与产物中所含未反应的醇及同系物的分布宽窄有很大关系。同系物的分布愈窄,其增稠效果愈大。 

(5)酯类增稠剂

这类增稠剂也属于非离子增稠剂,主要用于表面活性剂水溶液体系中。其优点是不容易水解,在宽的pH和温度范围内黏度稳定。目前最常用的是PEG-150二硬脂酸酯。 

(6)氧化胺增稠剂

氧化胺是极性的非离子表面活性剂,具有增稠作用。其特征表现为:在中性或碱性条件下,氧化胺在水溶液中以不电离的水化物存在,显示非离子性;在酸性溶液中,它显示弱的阳离子性。当溶液pH值<3时,氧化胺的阳离子性尤为明显。因此它可以在不同的条件下与阳离子、阴离子、非离子和两性离子等表面活性剂很好配伍并显示协同效应。氧化胺常用于化妆品方面的增稠。 

(7)其它增稠剂

少数甜菜碱和皂类也能作增稠剂,皂类可用于棒状化妆品中的增稠,甜菜碱主要用于表面活性剂水体系中。 

高分子增稠剂

(1)无机增稠剂

无机增稠剂是一类吸水膨胀而形成触变性的凝胶矿物。主要有膨润土、凹凸棒土、硅酸铝等,其中膨润土最为常用。现在人们正在研究用无机物和其它物质复合合成增稠剂,如 M Chtourou 等人正在研究用铵盐的有机衍生物和类属蒙脱石的突尼斯黏土合成增稠剂,并且有了很大的进展。 

(2)纤维素类增稠剂

纤维素类增稠剂的使用历史较长,品种也很多,有甲基纤维素、羧甲基纤维素、羟乙基纤维素、羟丙基甲基纤维素等,广泛应用于各种领域。纤维素类增稠剂通过水合膨胀的长链而增稠,其体系表现明显的假塑性流变形态。 

(3)聚丙烯酸类增稠剂

聚丙烯酸类增稠剂属阴离子型增稠剂,是目前应用比较广泛的合成增稠剂,尤其在印染方面。一般由 3 种或更多的单体聚合而成,主单体一般为羧酸类单体,如丙烯酸、马来酸或马来酸酐、甲基丙烯酸等;第二单体一般为丙烯酸酯或苯乙烯;第三单体是具有交联作用的单体,例如N,N-亚甲基双丙烯酰胺、双丙烯酸丁二酯或邻苯二甲酸二丙烯酯等。 

(4)聚氨酯类增稠剂

聚氨酯全称为聚氨基甲酸酯,是分子结构中含有—NHCOO—单元的高分子化合物。可通过二异氰酸酯和聚乙二醇在封端剂的存在下合成,聚氨酯类增稠剂是近年来新开发的缔合型增稠剂,是分子量相对较低的水溶性聚氨酯。分子结构中有亲水部分也有亲油部分,呈现出一定的表面活性。 

(5)天然胶增稠剂

天然胶主要有胶原蛋白类和聚多糖类,但是作为增稠剂的天然胶主要是聚多糖类。 

(6)聚氧乙烯类增稠剂

一般把相对分子质量>2.5×10的产品称作聚氧乙烯,而<2.5×10的称作聚乙二醇,增稠机理主要与高分子聚合物链有关。聚氧乙烯的水溶液在紫外线、强酸和过渡金属离子(特别是 Fe、Cr和Ni)作用下会自动氧化降解,失去其黏度。 

(7)其它增稠剂

PVM/MA 癸二烯交联聚合物(聚乙烯甲基醚/丙烯酸甲酯与癸二烯的交联聚合物)是新的一族增稠剂,能配制成透明定型凝胶、喷发胶和乳胶,可用于增稠醇类溶液、甘油和其它非水体系。

作用

增稠、分散和稳定作用;胶凝作用;凝聚澄清作用;保水作用;控制结晶;成膜、保鲜作用等。

特性比较

增稠剂有着特定的流变学性质,抗酸性首推海藻酸丙二醇酯;增调性首选瓜尔豆胶;溶液假塑性、冷水中溶解度最强为黄原胶;乳化托附性以阿拉伯胶最佳;凝胶性琼脂强于其它胶但凝胶透明度尤以卡拉胶为甚;卡拉胶在乳类稳定性方面也优于其它胶。改性石蜡树脂适用范围相对较广,耐酸碱耐高温,冷水溶解较强,用途和其他类增稠剂相比更为广泛。

增稠剂

基本化学组成

对大多数增稠剂而言,它们的基本化学组成是单糖及其衍生物。常见的单糖包括葡萄糖、葡萄糖醛酸、甘露糖醛酸、鼠李糖、毗甘前半乳糖,古洛糖醛酸、半乳精、半乳精醛酸等。如羟丙基二淀粉磷酸酯是淀粉衍生物;明胶的主要成分是蛋白质;果胶是膳食纤维的一种。

食品增稠剂都属于大分子物质,绝大多数进入人体后不被人体消化吸收,如果胶、瓜尔胶、卡拉胶等,其作用与膳食纤维类似。少数增稠剂例如明胶,能够被人体消化,但明胶主要成分是蛋白质,经过消化会分解为氨基酸,继而参与人体代谢,是能吸收利用的营养物质。

实际应用

增稠剂又称胶凝剂,用于食品时又称糊料或食品胶。它可以提高物系粘度,使物系保持均匀的稳定的悬浮状态或乳浊状态,或形成凝胶。广泛用于食品、涂料、胶黏剂、化妆品、洗涤剂、印染、橡胶、医药等领域。在涂料印花中,由增稠剂、水、粘合剂和涂料色浆组成的涂料印花色浆,印花色浆在印花机械力作用下,发生切变力,使印花色浆的粘度在瞬间大幅度降低;当切变力消失时,又恢复至原来的高粘度,使织物印花轮廓清晰。这种随切变力的变化而发生的粘度变化,主要是靠增稠剂来实现的。在乳胶漆制造中,增稠剂对乳胶漆的增稠、稳定及流变性能起着多方面协调作用。再乳胶聚合过程中用作保护胶体,提高乳液的稳定性;再颜料、填料分散阶段,提高分散物料的粘度而利于分散;在储运过程中提高涂料稳定性及抗冻融性,防止颜料、填料沉底结块;在施工中调节乳胶漆粘稠度,并呈良好的触变性等。在食品中添加千分之几的食品增稠剂,具有胶凝、成膜、持水、悬浮、乳化、泡沫稳定及润滑等功效。对流态食品或冻胶食品的色、香、味、结构和食品的相对稳定性起着十分重要的作用。

增稠剂大多属于亲水性高分子化合物,按来源分为动物类、植物类、矿物类、合成类或半合成类。简单分可分为天然和合成两大类。天然品大多数是从含多糖类粘性物质的植物及海藻类制取,如淀粉、果胶、琼脂、明胶、海藻脂、角叉胶、糊精、黄耆胶、多糖素衍生物等;合成品有甲基纤维素、羧甲基纤维素等纤维素衍生物、淀粉衍生物、干酪素、聚丙烯酸钠、聚氧化乙烯、聚乙烯吡咯烷酮、聚乙烯醇、低分子聚乙烯蜡、聚丙烯酰胺等。

饮料生产中常用的增稠剂以及作乳化稳定剂用的增稠剂主要有羧甲基纤维素钠、藻酸丙二醇酯、卡拉胶、黄原胶、果胶、瓜尔豆胶、刺槐豆胶等。

羧甲基纤维素

性状

CMC

CMC为葡萄糖聚合度200—500的纤维素衍生物,醚化度0.6—0.7,为白色或类白色的粉末或纤维状物质,无臭,有吸湿性。羧基的置换度(醚化度)决定其性质。醚化度0.3以上时在碱液中可溶。水溶液黏度由pH、聚合度决定,醚化度0.5—0.8时在酸性中也不沉淀。CMC易溶于水,在水中成为透明的黏稠溶液,其黏度随溶液浓度和温度而变化。60℃以下温度稳定,在80℃以上温度长时间加热会降低黏度。使用范围

具有增稠、悬浮、乳化、稳定等多种功能。在饮料生产中主要用于果肉型果汁饮料的增稠剂、蛋白质饮料的乳化稳定剂和酸乳饮料的稳定剂。用量一般0.1%—0.5%。藻酸丙二醇酯(PGA):PGA为淡黄色略有芳香的粉末,易溶于水,一般用量为1%,浓度高时黏度大,温度升高时黏度下降。在pH3—4范围内,随pH降低而黏度增大。在pH3附近最稳定,在pH7以上发生水解,黏度显着降低。PGA在60℃左右时稳定,温度再升高时黏度下降。但加热时的变化仅表现聚合度降低,未见酯键水解,即使在90℃,pH3.1的酸性溶液中亦能相对稳定。

使用范围:PGA具有丙二醇基,亲油性大,因此乳化性强,同时由于酯化度低,其性质类似藻酸钠,在饮料生产中主要作乳化稳定剂,在连续相中产生黏性,提高乳浊液稳定性。

另外单独或与其他增稠剂组合使用时作为酸性饮料的增稠剂,可获得良好的流变学特性,使固形物成分很好地悬浮于果汁中,提高果肉型饮料的稳定性。还可作为果汁饮料、酸乳饮料的稳定剂以及乳化香精的乳化稳定剂等。PGA一般用量为0.1%—0.5%。FAO/WHO食品添加剂专门委员会规定的日摄入量(ADI)为25mg/kg体重,规定的使用标准为1%以下。

琼脂

琼脂性状

用石花菜提取物制成的琼脂,是一种重要的植物胶,无色,无固定形状,但属于固体,可溶于热水中。琼脂可用来制作冷食品和微生物的培养基等。琼脂通常被称为洋菜或洋粉,也叫石花胶,琼脂含有丰富的膳食纤维(含量为80.9%),蛋白质含量高,热量低,具有排毒养颜、泻火、润肠、降血压、降血糖和防癌作用,被联合国粮农组织确认为21世纪健康食品。

琼脂使用范围

琼脂是由海藻中提取的多糖体,是目前世界上用途最广泛的海藻胶之一。它在食品工业、医药工业、日用化工、生物工程等许多方面有着广泛的应用,琼脂用于食品中能明显改变食品的品质,提高食品的档次。价格很高。其特点:具有凝固性,稳定性,能与一些物质形成络合物等物理化学性质,可用作增稠剂,凝固剂,悬浮剂,乳化剂,保鲜剂和稳定剂。广泛用于制造粒粒橙及各种饮料,果冻,冰淇淋,糕点,软糖,罐头,肉制品,八宝粥,银耳燕窝,羹类食品,凉拌食品等等。琼脂在化学工业,医学科研,可作培养基,药膏基及其他用途.

琼脂是以藻类的石花菜属(Gelidium)及江蓠属(Gracilaria)制成的明胶产品,为最常用的微生物培养基的固化剂,也用于肉、鱼、禽类罐头和化妆品、药品及牙科医疗。在酿造和葡萄酒工业中用作澄清剂,制作冰淇淋、糕点及沙拉调味料时用作增稠剂,并作金属拉丝的润滑剂等。

黄原胶

性状

在低浓度(0.5%以下)时具有天然树胶的最高黏度,可溶于冷水。水溶液具有典型的假塑性流动,在受到剪切时,黏度逐渐下降,而剪切力降低时,黏度又立即恢复。水溶液的黏度在较大温度范围内基本恒定。多数树胶当其温度每升高5℃,黏度约降低15%,而黄原胶仅降低5%左右。黄原胶还具有耐盐性,在食盐存在下加热不会盐析。与刺槐树胶、瓜尔豆胶等含半乳甘露聚糖的胶类混用有增效作用。如与刺槐树胶组合可明显增稠,与瓜尔豆胶组合可形成凝胶。

使用范围

可广泛用于增稠剂、乳化剂、稳定剂和凝胶强化剂。用于果肉型饮料、蛋白质饮料等,可增加饮料的浓厚感,并稳定各成分的悬浊性。因黄原胶具有假塑性,用于饮料增稠但无黏糊感,并有良好的放香性。将CMC作胶体保护剂,与黄原胶组合可防止饮料凝聚。黄原胶还可用于固体粉末饮料,标准用量为1%。

增稠剂

卡拉胶

卡拉胶性状

为白色或淡黄色粉末,无味无臭,在60℃以上的热水中完全溶解,不溶于有机溶剂。在pH9时稳定性最好,pH6以上可以高温加热,pH3.5以下时加热会发生酸水解。水溶液在有钾、钙离子存在时可生成可逆性凝胶。

卡拉胶使用范围

作增稠剂、悬浮剂、凝胶剂、乳化剂和稳定剂,一般用量0.03%—0.5%。如在可可牛奶中用量为0.025%—0.035%,牛乳凝胶为0.2%—0.3%,酸乳为0.02%—0.03%,加热杀菌的饮料和牛乳凝胶选取K型。同时,卡拉胶与刺槐树胶有增效作用,可提高其凝乳强度和黏度。

果胶

性状

果胶为褐色或灰白色的颗粒或粉末,口感黏滑,溶于20倍的水,成乳白色黏稠液,耐热性好,不溶于有机溶剂。

使用范围

增稠剂

主要作乳化剂、稳定剂、胶凝剂、增稠剂和品质改良剂使用。在果汁饮料或固体

饮料中使用,可使饮料增黏,或使精油、果粒等悬浊稳定化。在果汁饮料中的用量为0.05%—0.1%,在浓缩果汁中用量为0.1%—0.2%。使用时用糖浆润湿或同3倍量以上的砂糖混合,更使果胶易溶于水。明胶:为无色或淡黄色透明、脆性、几乎无臭、无味的薄片或粗粉末。在5—10倍量冷水中膨润,可溶于热水、甘油和醋酸,不溶于醚、乙醇等有机溶剂。溶于热水时成为非常黏的溶胶,5%以下浓度不凝胶,10%—15%的溶液可形成凝胶。

凝胶化温度与其浓度和共存的盐的种类、浓度以及溶液pH有关。30℃左右液化,20℃—25℃凝胶。明胶水溶液长时间煮沸时发生变化,冷却后也能成为凝胶。再加热则变为蛋白胨。明胶主要成分为83%以上的蛋白质,15%以下的水分和2%以下的无机灰分。

使用范围:可作为饮料的增稠剂、稳定剂,同时作果汁和酒的澄清剂使用。

海藻胶

由于海藻胶在增稠性,稳定性,胶凝性,保形性,薄膜成形性等方面具有显着的优点,加上其独特的保健功能,使之在食品工业中得到了广泛的应用,成为产销量最大的增稠剂之一。本节重点介绍海藻酸及其盐,琼脂,卡拉胶的组成结构,理化性质及其在食品工业中的应用.

海藻酸钠

别名:褐藻酸钠,藻胶。化学结构:海藻酸和海藻酸盐是直链糖醛酸聚糖。由两种分子组成即:

海藻酸钠性状

白色至浅黄色纤维状或颗粒状粉末,几乎无臭,无味,溶于水形成粘稠糊状肢体溶液。不溶于乙醚,乙醇或氯仿等。其溶液呈中性。与金属盐结合凝固.

性能

海藻酸钠

海藻酸钠与钙离子形成的凝胶,具有耐冻结性和干燥后可吸水膨胀复原等特性。海藻酸钠的黏度影响所形成凝胶的脆性,黏度越高,凝胶越脆。增加钙离子和海藻酸钠的浓度而得到的凝胶,强度增大。胶凝形成过程中可通过调节pH值,选择适宜的钙盐和加入磷酸盐缓冲剂或螯合剂来控制。也可以通过逐渐释出多价阳离子或氢离子,或两者同时来控制。通过调节海藻酸钠与酸的比例,来调节凝胶的刚性。通过控制钙盐的溶解度,可调节凝胶的品种和刚性,使用易溶性的氯化钙,迅速制成凝胶;而使用磷酸二氢钙时,温度升到93~107℃方能释出钙,可延迟胶凝化时间。钙离子加入量达2.3%时,得到稠厚的凝胶;加入量低于1%时,为流动状体。当pH值接近蛋白质等电点时,蛋白质和海藻酸钠形成可溶性络合物,黏度增大,可抑制蛋白质沉淀;当pH值进一步下降,络合物则发生沉淀.毒性

LD50大鼠静脉注射l00mg/kg体重.GRA5FDA-2lCFR173,310,184,1724.ADI无需规定(FAO/WHO1994).

制法

从海带或马尾藻中提取.

应用

用作乳化剂,成膜剂,增稠剂。在酸性溶液中作用弱,一般不宜在酸性较大的水果汁和食品中应用。我国《食品卫生添加使用标准》(GB2760-1996)规定:可按生产需要适量用于各类食品。美国FDA(1989)规定:用途及限量为:调味品和佐料(除用于填充油橄榄的香料之外),1%;糖果,蜜饯和糕点糖霜,6.0%;明胶和布丁,4.0%;罐头,10.0%;加工水果和水果汁,2.0%;其他食品,根据实际工艺需要不超过1.0%.日本规定:用于冰淇淋以改善保形性及使组织细腻,其用量为0.1%~0.4%;制造馅类可赋予粘结件,使吸附于稳定剂的水分难以形成冰晶,其用量为0.1%~0.7%.此外可制成薄膜用于糖果防粘包装.

安全性

一般来说,工业用增稠剂不能用于食品制造。食品增稠剂一般按照下列标准使用:

国家标准

商业推荐性标准:SB/T10016标准;

中国国家食品添加剂使用标准:GB2760_2011

如,在冷饮中,国家允许使用的添加剂不到30种。因为结晶体不同,冰糕、雪糕、冰激凌也有各自的标准:

其中,冰棍的成分一般只有水、糖和添加剂,水的含量应是95%,添加剂不能超过总重量的5%;

雪糕和冰激凌则对总干物投放量有要求,雪糕总干物为15%到25%,这里的总干物指奶、玉米淀粉、饴糖、蔗糖;冰激凌总干物含量为25%到40%,这里的总干物指奶或还原奶。

截至2012年,关于食品添加剂的标准仍不够具体详细,尽管每种食品添加剂都在规定含量内,但关于食品添加剂叠加含量应控制在多少,国家目前并没有具体的标准。

食品类

类别名称代码使用范围最大使用量
增稠剂乙酰化二酸双淀粉钠调味料(酱汁粉)、汤料、巧克力制品26
增稠剂结冷胶各类食品按生产需要适量使用
增稠剂磷酸酯双淀粉各类食品按生产需要适量使用
增稠剂葫芦巴胶冷冻饮品0.1
增稠剂葫芦巴胶烘烤食品0.15
展开表格