定向凝固,又称为定向结晶,是指使金属或合金在熔体中定向生长晶体的一种工艺方法。定向凝固技术是在铸型中建立特定方向的温度梯度,使熔融合金沿着热流相反方向,按要求的结晶取向进行凝固铸造的工艺。它能大幅度地提高高温合金综合性能。

中文名

定向凝固

外文名

directional solidification

应用

高温合金生产等

别称

定向结晶

方法

发热剂法等

所属学科

冶金学

定义

定向凝固是在凝固过程中采用强制手段,在凝固金属样未凝固熔体中建立起沿特定方向的温度梯度,从而使熔体在气壁上形核后沿着与热流相反的方向,按要求的结晶取向进行凝固的技术。该技术最初是在高温合金的研制中建立并完善起来的。采用、发展该技术最初是用来消除结晶过程中生成的横向晶界,从而提高材料的单向力学性能。该技术运用于燃气涡轮发动机叶片的生产,所获得的具有柱状乃至单晶组织的材料具有优良的抗热冲击性能、较长的疲劳寿命、较高的蠕变抗力和中温塑性,因而提高了叶片的使用寿命和使用温度,成为当时震动冶金界和工业界的重大事件之一。

定向凝固技术对金属的凝固理论研究与新型高温合金等的发展提供了一个极其有效的手段。但是传统的定向凝固方法得到的铸件长度是有限的,在凝固末期易出现等轴晶,且晶粒易粗大。为此出现了连续定向凝固技术,它综合了连铸和定向凝固的优点,又相互弥补了各自的缺点及不足,从而可以得到具有理想定向凝固组织、任意长度和断面形状的铸锭或铸件。它的出现标志着定向凝固技术进入了一个新的阶段。

定向凝固技术的最大优势在于,其制备的合金材料消除了基体相与增强相相界面之间的影响,有效地改善了合金的综合性能。同时,该技术也是学者们研究凝固理论与金属凝固规律的重要手段。

原理

实现定向凝固需要两个条件:首先,热流向单一方向流动并垂直于生长中的固-液界面;其次,在晶体生长前方的熔液中没有稳定的结晶核心。为此,在工艺上必须采取措施避免侧向散热,同时在靠近固一液界面的熔液中应造成较大的温度梯度,这是保证非定向柱晶和单晶生长停止、取向正确的基本要素。

实现定向凝固应满足凝固界面具有稳定的定向生长要求,抑制固一液界面前方可能出现的较大成分过冷区,而导致自由晶粒的产生。根据成分过冷理论,固一液界面要以单向的平面生长方式进行长大时,需要保证

足够大(

为晶体生长前沿液相的温度梯度,R为界面的生长速度),这就需要通过以下几个基本工艺措施来保证:①严格的单向散热,要使凝固系统始终处于柱状晶生长方向的正温度梯度作用之下,并且要绝对阻止侧向散热,以避免界面前方型壁及其附近的形核和长大;②要减小熔体的异质形核能力以避免界面前方的形核现象,即要提高熔体的纯净度;③要避免液态金属的对流、搅动和振动,以阻止界面前方的晶粒游离。对于晶粒密度大于液态金属的合金,避免自然对流的最好方法就是自下而上地进行单向结晶。

方法

发热剂法

所谓的发热剂法就是将熔化好的金属液浇入一侧壁绝热,底部冷却,顶部覆盖发热 剂的铸型中,在金属液和已凝固金属中建立起一个自上而下的温度梯度,使铸件自下而上进行凝固,实现单向凝固。这种方法由于所能获得的温度梯度不大,并且很难控制,致使凝固组织粗大,铸件性能差,因此,该法不适于大型、优质铸件的生产。但其工艺简单、成本低,可用于制造小批量零件。

功率降低法

将保温炉的加热器分成几组,保温炉是分段加热的。当熔融的金属液置于保温炉内后,在从底部对铸件冷却的同时,自下而上顺序关闭加热器,金属则自下而上逐渐凝固,从而在铸件中实现定向凝固。通过选择合适的加热器件,可以获得较大的冷却速度,但是在凝固过程中温度梯度是逐渐减小的,致使所能允许获得的柱状晶区较短,且组织也不够理想。加之设备相对复杂,且能耗大,限制了该方法的应用。

高速凝固法

为了改善功率降低法在加热器关闭后,冷却速度慢的缺点,在Bridgman晶体生长技术的基础上发展成了一种新的定向凝固技术,即快速凝固法。该方法的特点是铸件以一定的速度从炉中移出或炉子移离铸件,采用空冷的方式,而且炉子保持加热状态。这种方法由于避免了炉膛的影响,且利用空气冷却,因而获得了较高的温度梯度和冷却速度,所获得的柱状晶间距较长,组织细密挺直,且较均匀,使铸件的性能得以提高,在生产中有一定的应用。

液态金属冷却法

HRS法是由辐射换热来冷却的,所能获得的温度梯度和冷却速度都很有限。为了获得更高的温度梯度和生长速度。在HRS法的基础上,将抽拉出的铸件部分浸入具有高导热系数的高沸点、低熔点、热容量大的液态金属中,形成了一种新的定向凝固技术,即LMC法。这种方法提高了铸件的冷却速度和固液界面的温度梯度,而且在较大的生长速度范围内可使界面前沿的温度梯度保持稳定,结晶在相对稳态下进行,能得到比较长的单向柱晶。

常用的液态金属有Ga-In合金和

合金,以及Sn液,前二者熔点低,但价格昂贵,因此只适于在实验室条件下使用。 Sn液熔点稍高

,但由于价格相对比较便宜,冷却效果也比较好,因而适于工业应用。该法已被美国、前苏联等国用于航空发动机叶片的生产。

应用

普通铸造获得的是大量的等轴晶,等轴晶粒的长度和宽度大致相等,其纵向晶界与横向晶界的数量也大致相同。对高温合金涡轮叶片的事故分析发现,由于涡轮高速旋转时叶片受到的离心力使得横向晶界比纵向晶界更容易开裂。应用定向凝固方法,得到单方向生长的柱状晶,不产生横向晶界,较大地提高了材料的单向力学性能。应用单晶铸造获得的单晶叶片可显著提高现代航空对于磁性材料,应用定向凝固技术,可使柱状晶排列方向与磁化方向一致,大大改善了材料的磁性能。定向凝固技术还广泛用于自生复合材料的生产制造,用定向凝固方法得到的自生复合材料消除了其他复合材料制备过程中增强相与基体间界面的影响,使复合材料的性能大大提高。