光线经过一个大质量天体附近时,受其引力作用(或者说进入了该天体附近的弯曲空间),路线会发生偏转,称为“短程线效应”。距离最短的曲线在相对论中的专业术语是短程线,事实上,相应于速度小于C,等于C,大于C的三种测地线分别称为类时短程线。

外文名

Geodetic

概述

给定无向图G=〈V,E〉,u,v为G中任意两个顶点,若u、v连通,则称从u到v的长度最短的通路为u与v之间的短程线,其长度称为u到v的距离,记为d(u,v).如果两曲面沿一曲线相切,并且此曲线是其中一个曲面的短程线,那么它也是另一个曲面的短程线。过曲面上任一点,给定一个曲面的切方向,则存在一条短程线切于此方向。在适当的小范围内联结任意两点的测地线是最短线,所以测地线又称为短程线。

短程线效应

简介

如果不受到引力以外其他力的作用,物体将在类时或类光短程线上运动(因为没有物体的速度能超过光速)例如,地球这样的物体并非收到称作引力的力的作用而沿着弯曲轨道运动;相反,他们之所以沿着弯曲轨道运动,是因为在弯曲空间中,他们遵循着一条最接近直线的路径运动,这个路径称作短程线。用专业术语来说,短程线的定义就是相邻两点之间最短(或最长)的路径。

称作短程线进动(Geodetic Effect或Geodetic Precession)是指在广义相对论预言下引力场的时空曲率对处于其中的具有自旋角动量的测试质量的运动状态所产生的影响,这种影响造成了测试质量的自旋角动量在引力场内沿测地线的进动。这种效应成为了广义相对论的一种实验验证方法,并且已经由美国国家航空航天局于2004年发射的科学探测卫星“引力探测器B”在观测中证实。

解释

由于广义相对论本身是一种几何理论,所有的引力效应都可以用时空曲率来解释,测地线效应也不例外。不过,这里自旋角动量的进动也可以部分地从广义相对论的替代理论之一——引力磁性来理解。从引力磁性的观点来看,短程线效应首先来源于轨道-自旋耦合作用。在引力探测器B的观测中,这是引力探测器B中的陀螺仪的自旋和位于轨道中心的地球的质量流的相互作用。本质上这完全可以和电磁理论中的托马斯进动做类比。这种相互作用所导致的进动在全部的测地线进动中起到三分之一的贡献。另外的三分之二贡献不能用引力磁性来解释,只能认为来自于时空曲率。简单来说,平直时空中沿轨道运动的自旋角动量方向会随着引力场造成的时空弯曲而倾斜。这一点其实并不难于理解:垂直于一个平面的矢量在平面发生弯曲后定然会改变方向。根据推算,引力探测器B的绕地轨道周长由于地球引力场的影响会比不考虑引力场时的周长缩短1.1英寸(约合2.8厘米),这个例子在引力探测器B的研究中经常被称作“丢失的一英寸”。在引力探测器B的位于642千米高空的极轨道上,广义相对论的理论预言由于自旋-轨道耦合和时空曲率而产生的轨道平面上的测地线效应总和为每年进动6.606角秒(约合0.0018度)。这对于弱引力场中相对论效应来说已经是一个相当显著的影响了(作为同为引力探测器B的观测任务之一的地球引力场的参考系拖拽要比测地线效应弱170倍)。引力探测器B的观测结果首先在2007年4月举行的美国物理学会四月年会上进行了快报,其观测结果与理论误差小于1%。